IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v140y2015icp99-112.html
   My bibliography  Save this article

Third-order local power properties of tests for a composite hypothesis, II

Author

Listed:
  • Kakizawa, Yoshihide

Abstract

The Bartlett-type adjustment is a higher-order asymptotic method for improving the chi-squared approximation to the null distributions of various test statistics, which ensures that the resulting test has size α+o(N−1), where 0<α<1 is the significance level and N is the sample size. We continue our recent works on the third-order average local power properties of several Bartlett-type adjusted tests. Strengthening the results in the 1990s, the third-order optimality of the adjusted Rao test in a sense has been established even if both the interest parameter and the nuisance parameter are multi-dimensional. We briefly discuss adjusted profile likelihood inference for handling the nuisance parameter.

Suggested Citation

  • Kakizawa, Yoshihide, 2015. "Third-order local power properties of tests for a composite hypothesis, II," Journal of Multivariate Analysis, Elsevier, vol. 140(C), pages 99-112.
  • Handle: RePEc:eee:jmvana:v:140:y:2015:i:c:p:99-112
    DOI: 10.1016/j.jmva.2015.04.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X15001153
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2015.04.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kakizawa, Yoshihide, 2013. "Third-order local power properties of tests for a composite hypothesis," Journal of Multivariate Analysis, Elsevier, vol. 114(C), pages 303-317.
    2. Kakizawa, Yoshihide, 2012. "Generalized Cordeiro–Ferrari Bartlett-type adjustment," Statistics & Probability Letters, Elsevier, vol. 82(11), pages 2008-2016.
    3. Kakizawa, Yoshihide, 2010. "Comparison of Bartlett-type adjusted tests in the multiparameter case," Journal of Multivariate Analysis, Elsevier, vol. 101(7), pages 1638-1655, August.
    4. Taniguchi, Masanobu, 1991. "Third-order asymptomic properties of a class of test statistics under a local alternative," Journal of Multivariate Analysis, Elsevier, vol. 37(2), pages 223-238, May.
    5. Rahul Mukerjee, 1993. "An extension of the conditional likelihood ratio test to the general multiparameter case," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 45(4), pages 759-771, December.
    6. Magdalinos, Michael A., 1992. "Stochastic Expansions and Asymptotic Approximations," Econometric Theory, Cambridge University Press, vol. 8(3), pages 343-367, September.
    7. Kakizawa, Yoshihide, 2012. "Improved chi-squared tests for a composite hypothesis," Journal of Multivariate Analysis, Elsevier, vol. 107(C), pages 141-161.
    8. Kakizawa, Yoshihide, 2009. "Third-order power comparisons for a class of tests for multivariate linear hypothesis under general distributions," Journal of Multivariate Analysis, Elsevier, vol. 100(3), pages 473-496, March.
    9. Chandra, Tapas K. & Mukerjee, Rahul, 1991. "Bartlett-type modification for Rao's efficient score statistic," Journal of Multivariate Analysis, Elsevier, vol. 36(1), pages 103-112, January.
    10. Magdalinos, Michael A, 1994. "Testing Instrument Admissibility: Some Refined Asymptotic Results," Econometrica, Econometric Society, vol. 62(2), pages 373-404, March.
    11. Rao, C. Radhakrishna & Mukerjee, Rahul, 1997. "Comparison of LR, Score, and Wald Tests in a Non-IID Setting," Journal of Multivariate Analysis, Elsevier, vol. 60(1), pages 99-110, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kakizawa, Yoshihide, 2017. "Third-order average local powers of Bartlett-type adjusted tests: Ordinary versus adjusted profile likelihood," Journal of Multivariate Analysis, Elsevier, vol. 153(C), pages 98-120.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kakizawa, Yoshihide, 2017. "Third-order average local powers of Bartlett-type adjusted tests: Ordinary versus adjusted profile likelihood," Journal of Multivariate Analysis, Elsevier, vol. 153(C), pages 98-120.
    2. Kakizawa, Yoshihide, 2013. "Third-order local power properties of tests for a composite hypothesis," Journal of Multivariate Analysis, Elsevier, vol. 114(C), pages 303-317.
    3. Kakizawa, Yoshihide, 2012. "Generalized Cordeiro–Ferrari Bartlett-type adjustment," Statistics & Probability Letters, Elsevier, vol. 82(11), pages 2008-2016.
    4. Kakizawa, Yoshihide, 2012. "Improved chi-squared tests for a composite hypothesis," Journal of Multivariate Analysis, Elsevier, vol. 107(C), pages 141-161.
    5. Cribari-Netoa, Francisco & Ferrari, Silvia L. P., 1995. "Bartlett-corrected tests for heteroskedastic linear models," Economics Letters, Elsevier, vol. 48(2), pages 113-118, May.
    6. Kakizawa, Yoshihide, 2010. "Comparison of Bartlett-type adjusted tests in the multiparameter case," Journal of Multivariate Analysis, Elsevier, vol. 101(7), pages 1638-1655, August.
    7. Kakizawa, Yoshihide, 2016. "Some integrals involving multivariate Hermite polynomials: Application to evaluating higher-order local powers," Statistics & Probability Letters, Elsevier, vol. 110(C), pages 162-168.
    8. Kakizawa, Yoshihide, 2009. "Third-order power comparisons for a class of tests for multivariate linear hypothesis under general distributions," Journal of Multivariate Analysis, Elsevier, vol. 100(3), pages 473-496, March.
    9. Kakizawa, Yoshihide, 2011. "Improved additive adjustments for the LR/ELR test statistics," Statistics & Probability Letters, Elsevier, vol. 81(8), pages 1245-1255, August.
    10. Francesco Bravo, "undated". "Bartlett-type Adjustments for Empirical Discrepancy Test Statistics," Discussion Papers 04/14, Department of Economics, University of York.
    11. Kakizawa, Yoshihide & Iwashita, Toshiya, 2008. "A comparison of higher-order local powers of a class of one-way MANOVA tests under general distributions," Journal of Multivariate Analysis, Elsevier, vol. 99(6), pages 1128-1153, July.
    12. Symeonides Spyridon D. & Karavias Yiannis & Tzavalis Elias, 2017. "Size corrected Significance Tests in Seemingly Unrelated Regressions with Autocorrelated Errors," Journal of Time Series Econometrics, De Gruyter, vol. 9(1), pages 1-41, January.
    13. Stelios Arvanitis & Antonis Demos, 2015. "A class of indirect inference estimators: higher‐order asymptotics and approximate bias correction," Econometrics Journal, Royal Economic Society, vol. 18(2), pages 200-241, June.
    14. Antonis Demos & Stelios Arvanitis, 2010. "A New Class of Indirect Estimators and Bias Correction," DEOS Working Papers 1023, Athens University of Economics and Business.
    15. repec:aue:wpaper:1214 is not listed on IDEAS
    16. Wilhelm, Daniel, 2015. "Optimal Bandwidth Selection For Robust Generalized Method Of Moments Estimation," Econometric Theory, Cambridge University Press, vol. 31(5), pages 1054-1077, October.
    17. F. Cribari-Neto & G.M. Cordeiro, 1995. "On Bartlett and Bartlett-Type Corrections," Econometrics 9507001, University Library of Munich, Germany.
    18. Peter M. Robinson & Francesca Rossi, 2014. "Improved Lagrange multiplier tests in spatial autoregressions," Econometrics Journal, Royal Economic Society, vol. 17(1), pages 139-164, February.
    19. Jianhua Hu & Valen E. Johnson, 2009. "Bayesian model selection using test statistics," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(1), pages 143-158, January.
    20. Artur Lemonte, 2015. "On local power properties of the LR, Wald, score and gradient tests in nonlinear mixed-effects models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 67(5), pages 885-895, October.
    21. Arvanitis Stelios & Demos Antonis, 2018. "On the Validity of Edgeworth Expansions and Moment Approximations for Three Indirect Inference Estimators," Journal of Econometric Methods, De Gruyter, vol. 7(1), pages 1-38, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:140:y:2015:i:c:p:99-112. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.