IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v133y2015icp377-381.html
   My bibliography  Save this article

On the use of coordinate-free matrix calculus

Author

Listed:
  • Brinkhuis, Jan

Abstract

For a standard tool in econometrics, matrix calculus, an approach is illustrated in this note that is unusual in that context, a coordinate-free approach. It can help to eliminate the persistent use of non-standard conventions. The Kronecker product and its use can be better understood. The complications and pitfalls of defining twice differentiability by partial derivatives are avoided. Its use is demonstrated, for example by giving a coordinate-free determination of the derivative of the determinant.

Suggested Citation

  • Brinkhuis, Jan, 2015. "On the use of coordinate-free matrix calculus," Journal of Multivariate Analysis, Elsevier, vol. 133(C), pages 377-381.
  • Handle: RePEc:eee:jmvana:v:133:y:2015:i:c:p:377-381
    DOI: 10.1016/j.jmva.2014.09.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X14002267
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2014.09.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Magnus, Jan R., 2010. "On the concept of matrix derivative," Journal of Multivariate Analysis, Elsevier, vol. 101(9), pages 2200-2206, October.
    2. Sturm, Jos F. & Zhang, Shuzhong, 2000. "On weighted centers for semidefinite programming," European Journal of Operational Research, Elsevier, vol. 126(2), pages 391-407, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Shuangzhe & Leiva, Víctor & Zhuang, Dan & Ma, Tiefeng & Figueroa-Zúñiga, Jorge I., 2022. "Matrix differential calculus with applications in the multivariate linear model and its diagnostics," Journal of Multivariate Analysis, Elsevier, vol. 188(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Shuangzhe & Leiva, Víctor & Zhuang, Dan & Ma, Tiefeng & Figueroa-Zúñiga, Jorge I., 2022. "Matrix differential calculus with applications in the multivariate linear model and its diagnostics," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    2. James Younker, 2022. "Calculating Effective Degrees of Freedom for Forecast Combinations and Ensemble Models," Discussion Papers 2022-19, Bank of Canada.
    3. D. Stephen G. Pollock, 2021. "Multidimensional Arrays, Indices and Kronecker Products," Econometrics, MDPI, vol. 9(2), pages 1-15, April.
    4. Sturm, J.F., 2002. "Implementation of Interior Point Methods for Mixed Semidefinite and Second Order Cone Optimization Problems," Other publications TiSEM b25faf5d-0142-4e14-b598-a, Tilburg University, School of Economics and Management.
    5. Stephen Pollock, 2011. "On Kronecker Products, Tensor Products And Matrix Differential Calculus," Discussion Papers in Economics 11/34, Division of Economics, School of Business, University of Leicester, revised Jul 2011.
    6. Halicka, Margareta, 2002. "Analyticity of the central path at the boundary point in semidefinite programming," European Journal of Operational Research, Elsevier, vol. 143(2), pages 311-324, December.
    7. Mutschler, Willi, 2015. "Identification of DSGE models—The effect of higher-order approximation and pruning," Journal of Economic Dynamics and Control, Elsevier, vol. 56(C), pages 34-54.
    8. Lapo Filistrucchi & Tobias J. Klein, 2013. "Price Competition in Two-Sided Markets with Heterogeneous Consumers and Network Effects," Working Papers 13-20, NET Institute.
    9. Juhl, Ted & Sosa-Escudero, Walter, 2014. "Testing for heteroskedasticity in fixed effects models," Journal of Econometrics, Elsevier, vol. 178(P3), pages 484-494.
    10. Gubhinder Kundhi & Paul Rilstone, 2020. "Simplified Matrix Methods for Multivariate Edgeworth Expansions," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 18(2), pages 293-326, June.
    11. Sturm, J.F., 2002. "Implementation of Interior Point Methods for Mixed Semidefinite and Second Order Cone Optimization Problems," Discussion Paper 2002-73, Tilburg University, Center for Economic Research.
    12. Richard M. Golden & Steven S. Henley & Halbert White & T. Michael Kashner, 2016. "Generalized Information Matrix Tests for Detecting Model Misspecification," Econometrics, MDPI, vol. 4(4), pages 1-24, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:133:y:2015:i:c:p:377-381. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.