Optimal and minimax prediction in multivariate normal populations under a balanced loss function
Author
Abstract
Suggested Citation
DOI: 10.1016/j.jmva.2014.03.014
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Hu, Guikai & Peng, Ping, 2011. "All admissible linear estimators of a regression coefficient under a balanced loss function," Journal of Multivariate Analysis, Elsevier, vol. 102(8), pages 1217-1224, September.
- Ashok K. Bansal & Priyanka Aggarwal, 2009. "Bayes prediction of the regression coefficient in a finite population using balanced loss function," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(1), pages 1-16.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Peng, Ping & Hu, Guikai & Liang, Jian, 2015. "All admissible linear predictors in the finite populations with respect to inequality constraints under a balanced loss function," Journal of Multivariate Analysis, Elsevier, vol. 140(C), pages 113-122.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zinodiny, S. & Rezaei, S. & Nadarajah, S., 2014. "Bayes minimax estimation of the multivariate normal mean vector under balanced loss function," Statistics & Probability Letters, Elsevier, vol. 93(C), pages 96-101.
- Mehrjoo, Mehrdad & Jafari Jozani, Mohammad & Pawlak, Miroslaw, 2021. "Toward hybrid approaches for wind turbine power curve modeling with balanced loss functions and local weighting schemes," Energy, Elsevier, vol. 218(C).
- He, Daojiang & Wu, Jie, 2014. "Admissible linear estimators of multivariate regression coefficient with respect to an inequality constraint under matrix balanced loss function," Journal of Multivariate Analysis, Elsevier, vol. 129(C), pages 37-43.
- Cao, Ming-Xiang & He, Dao-Jiang, 2017. "Admissibility of linear estimators of the common mean parameter in general linear models under a balanced loss function," Journal of Multivariate Analysis, Elsevier, vol. 153(C), pages 246-254.
- Marchand, Éric & Strawderman, William E., 2020. "On shrinkage estimation for balanced loss functions," Journal of Multivariate Analysis, Elsevier, vol. 175(C).
- Hu, Guikai & Peng, Ping, 2012. "Matrix linear minimax estimators in a general multivariate linear model under a balanced loss function," Journal of Multivariate Analysis, Elsevier, vol. 111(C), pages 286-295.
- Peng, Ping & Hu, Guikai & Liang, Jian, 2015. "All admissible linear predictors in the finite populations with respect to inequality constraints under a balanced loss function," Journal of Multivariate Analysis, Elsevier, vol. 140(C), pages 113-122.
More about this item
Keywords
Optimal predictor; Minimax predictor; Finite population regression coefficient; Balanced loss function;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:128:y:2014:i:c:p:154-164. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.