IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v124y2014icp371-383.html
   My bibliography  Save this article

Bayesian model diagnostics using functional Bregman divergence

Author

Listed:
  • Goh, Gyuhyeong
  • Dey, Dipak K.

Abstract

It is crucial to check validation of any statistical model after fitting it for a given set of data. In Bayesian statistics, a researcher can check the fit of the model using a variety of strategies. In this paper we consider two major aspects, first checking that the posterior inferences are reasonable, given the substantive context of the model; and then examining the sensitivity of inferences to reasonable changes in the prior distribution and the likelihood. Here we consider functional Bregman divergence between posterior distributions for model diagnostics, which produce methods for outlier detection as well as for prior sensitivity analysis. The methodology is exemplified through a logistic regression and a circular data model.

Suggested Citation

  • Goh, Gyuhyeong & Dey, Dipak K., 2014. "Bayesian model diagnostics using functional Bregman divergence," Journal of Multivariate Analysis, Elsevier, vol. 124(C), pages 371-383.
  • Handle: RePEc:eee:jmvana:v:124:y:2014:i:c:p:371-383
    DOI: 10.1016/j.jmva.2013.11.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X13002509
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2013.11.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gelfand A. E. & Dey D. K., 1991. "On Bayesian Robustness Of Contaminated Classes Of Priors," Statistics & Risk Modeling, De Gruyter, vol. 9(1-2), pages 63-80, February.
    2. Dey, Dipak K. & Birmiwal, Lea R., 1994. "Robust Bayesian analysis using divergence measures," Statistics & Probability Letters, Elsevier, vol. 20(4), pages 287-294, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Spiridon Penev & Pavel Shevchenko & Wei Wu, 2019. "Myopic robust index tracking with Bregman divergence," Papers 1908.07659, arXiv.org, revised Jul 2021.
    2. Himchan Jeong & Dipak Dey, 2020. "Application of a Vine Copula for Multi-Line Insurance Reserving," Risks, MDPI, vol. 8(4), pages 1-23, October.
    3. Xiaoyue Zhao & Lin Zhang & Dipankar Bandyopadhyay, 2021. "A Shared Spatial Model for Multivariate Extreme-Valued Binary Data with Non-Random Missingness," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(2), pages 374-396, November.
    4. Wang, Huan & Wang, Guan-jun & Duan, Feng-jun, 2016. "Planning of step-stress accelerated degradation test based on the inverse Gaussian process," Reliability Engineering and System Safety, Elsevier, vol. 154(C), pages 97-105.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abhik Ghosh & Ayanendranath Basu, 2016. "Robust Bayes estimation using the density power divergence," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 68(2), pages 413-437, April.
    2. Basu, Sanjib, 2000. "Uniform stability of posteriors," Statistics & Probability Letters, Elsevier, vol. 46(1), pages 53-58, January.
    3. Luai Al-Labadi & Forough Fazeli Asl & Ce Wang, 2021. "Measuring Bayesian Robustness Using Rényi Divergence," Stats, MDPI, vol. 4(2), pages 1-18, March.
    4. Giles Hooker & Anand Vidyashankar, 2014. "Bayesian model robustness via disparities," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(3), pages 556-584, September.
    5. Haiyan Zheng & Thomas Jaki & James M.S. Wason, 2023. "Bayesian sample size determination using commensurate priors to leverage preexperimental data," Biometrics, The International Biometric Society, vol. 79(2), pages 669-683, June.
    6. Younshik Chung & Chansoo Kim, 2004. "Measuring robustness for weighted distributions: Bayesian perspective," Statistical Papers, Springer, vol. 45(1), pages 15-31, January.
    7. Adriano Suzuki & Vicente Cancho & Francisco Louzada, 2016. "The Poisson–Inverse-Gaussian regression model with cure rate: a Bayesian approach and its case influence diagnostics," Statistical Papers, Springer, vol. 57(1), pages 133-159, March.
    8. Gyuhyeong Goh & Jae Kwang Kim, 2021. "Accounting for model uncertainty in multiple imputation under complex sampling," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(3), pages 930-949, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:124:y:2014:i:c:p:371-383. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.