IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v115y2013icp68-83.html
   My bibliography  Save this article

Semiparametric Bayesian analysis of nonlinear reproductive dispersion mixed models for longitudinal data

Author

Listed:
  • Tang, Nian-Sheng
  • Zhao, Yuan-Ying

Abstract

In the development of nonlinear reproductive dispersion mixed models, it is commonly assumed that distribution of random effects is normal. The normality assumption is likely violated in many practical applications. In this paper, we assume that distribution of random effects is specified by a Dirichlet process prior for relaxing this limitation. A semiparametric Bayesian approach combining the stick-breaking prior and the blocked Gibbs sampler as well as the Metropolis–Hastings algorithm is developed for simulating observations from the posterior distributions and producing the joint Bayesian estimates of unknown parameters and random effects. Two goodness-of-fit statistics are presented to assess the plausibility of the posited model, and the procedures for computing the Bayes factor, pseudo-Bayes factor and deviance information criterion for model comparison are given. Also, we propose two Bayesian case deletion influence measures including the ϕ-divergence and Cook’s posterior mean distance. Four simulation studies and a real example are presented to illustrate the newly developed Bayesian methodologies.

Suggested Citation

  • Tang, Nian-Sheng & Zhao, Yuan-Ying, 2013. "Semiparametric Bayesian analysis of nonlinear reproductive dispersion mixed models for longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 115(C), pages 68-83.
  • Handle: RePEc:eee:jmvana:v:115:y:2013:i:c:p:68-83
    DOI: 10.1016/j.jmva.2012.09.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X12002199
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2012.09.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sik-Yum Lee, 2006. "Bayesian Analysis of Nonlinear Structural Equation Models with Nonignorable Missing Data," Psychometrika, Springer;The Psychometric Society, vol. 71(3), pages 541-564, September.
    2. Hyunsoon Cho & Joseph G. Ibrahim & Debajyoti Sinha & Hongtu Zhu, 2009. "Bayesian Case Influence Diagnostics for Survival Models," Biometrics, The International Biometric Society, vol. 65(1), pages 116-124, March.
    3. Daowen Zhang & Marie Davidian, 2001. "Linear Mixed Models with Flexible Distributions of Random Effects for Longitudinal Data," Biometrics, The International Biometric Society, vol. 57(3), pages 795-802, September.
    4. Chen, Xue-Dong & Tang, Nian-Sheng, 2010. "Bayesian analysis of semiparametric reproductive dispersion mixed-effects models," Computational Statistics & Data Analysis, Elsevier, vol. 54(9), pages 2145-2158, September.
    5. David J. Spiegelhalter & Nicola G. Best & Bradley P. Carlin & Angelika Van Der Linde, 2002. "Bayesian measures of model complexity and fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 583-639, October.
    6. Wendimagegn Ghidey & Emmanuel Lesaffre & Paul Eilers, 2004. "Smooth Random Effects Distribution in a Linear Mixed Model," Biometrics, The International Biometric Society, vol. 60(4), pages 945-953, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lu, Weisheng & Tam, Vivian W.Y., 2013. "Construction waste management policies and their effectiveness in Hong Kong: A longitudinal review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 214-223.
    2. Zhao Yuanying & Xu Dengke & Duan Xingde & Pang Yicheng, 2014. "Bayesian Subset Selection for Reproductive Dispersion Linear Models," Journal of Systems Science and Information, De Gruyter, vol. 2(1), pages 77-85, February.
    3. Dengke Xu & Zhongzhan Zhang & Liucang Wu, 2014. "Bayesian analysis of joint mean and covariance models for longitudinal data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(11), pages 2504-2514, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jara, Alejandro & Quintana, Fernando & San Marti­n, Ernesto, 2008. "Linear mixed models with skew-elliptical distributions: A Bayesian approach," Computational Statistics & Data Analysis, Elsevier, vol. 52(11), pages 5033-5045, July.
    2. Fabienne Comte & Adeline Samson, 2012. "Nonparametric estimation of random-effects densities in linear mixed-effects model," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 24(4), pages 951-975, December.
    3. Peng Zhang & Peter X.-K. Song & Annie Qu & Tom Greene, 2008. "Efficient Estimation for Patient-Specific Rates of Disease Progression Using Nonnormal Linear Mixed Models," Biometrics, The International Biometric Society, vol. 64(1), pages 29-38, March.
    4. Ye, Rendao & Wang, Tonghui & Gupta, Arjun K., 2014. "Distribution of matrix quadratic forms under skew-normal settings," Journal of Multivariate Analysis, Elsevier, vol. 131(C), pages 229-239.
    5. Reyhaneh Rikhtehgaran & Iraj Kazemi, 2013. "Semi-parametric Bayesian estimation of mixed-effects models using the multivariate skew-normal distribution," Computational Statistics, Springer, vol. 28(5), pages 2007-2027, October.
    6. Rendao Ye & Tonghui Wang & Saowanit Sukparungsee & Arjun Gupta, 2015. "Tests in variance components models under skew-normal settings," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 78(7), pages 885-904, October.
    7. Filidor Vilca & Camila Borelli Zeller & Gauss M. Cordeiro, 2015. "The sinh-normal/independent nonlinear regression model," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(8), pages 1659-1676, August.
    8. Duncan Fong & Peter Ebbes & Wayne DeSarbo, 2012. "A Heterogeneous Bayesian Regression Model for Cross-sectional Data Involving a Single Observation per Response Unit," Psychometrika, Springer;The Psychometric Society, vol. 77(2), pages 293-314, April.
    9. Philip S. Boonstra & Bhramar Mukherjee & Jeremy M. G. Taylor & Mef Nilbert & Victor Moreno & Stephen B. Gruber, 2011. "Bayesian Modeling for Genetic Anticipation in Presence of Mutational Heterogeneity: A Case Study in Lynch Syndrome," Biometrics, The International Biometric Society, vol. 67(4), pages 1627-1637, December.
    10. Leonardo Grilli & Carla Rampichini, 2015. "Specification of random effects in multilevel models: a review," Quality & Quantity: International Journal of Methodology, Springer, vol. 49(3), pages 967-976, May.
    11. Özgür Asar & David Bolin & Peter J. Diggle & Jonas Wallin, 2020. "Linear mixed effects models for non‐Gaussian continuous repeated measurement data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 69(5), pages 1015-1065, November.
    12. Zeinolabedin Najafi & Karim Zare & Mohammad Reza Mahmoudi & Soheil Shokri & Amir Mosavi, 2022. "Inference and Local Influence Assessment in a Multifactor Skew-Normal Linear Mixed Model," Mathematics, MDPI, vol. 10(15), pages 1-21, August.
    13. Bao, Junshu & Hanson, Timothy E., 2016. "A mean-constrained finite mixture of normals model," Statistics & Probability Letters, Elsevier, vol. 117(C), pages 93-99.
    14. Vilca, Filidor & Balakrishnan, N. & Zeller, Camila Borelli, 2014. "A robust extension of the bivariate Birnbaum–Saunders distribution and associated inference," Journal of Multivariate Analysis, Elsevier, vol. 124(C), pages 418-435.
    15. James C. Slaughter & Amy H. Herring & John M. Thorp, 2009. "A Bayesian Latent Variable Mixture Model for Longitudinal Fetal Growth," Biometrics, The International Biometric Society, vol. 65(4), pages 1233-1242, December.
    16. M. Teimourian & T. Baghfalaki & M. Ganjali & D. Berridge, 2015. "Joint modeling of mixed skewed continuous and ordinal longitudinal responses: a Bayesian approach," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(10), pages 2233-2256, October.
    17. Tang, Nian-Sheng & Tang, An-Min & Pan, Dong-Dong, 2014. "Semiparametric Bayesian joint models of multivariate longitudinal and survival data," Computational Statistics & Data Analysis, Elsevier, vol. 77(C), pages 113-129.
    18. Staudenmayer, John & Ruppert, David & Buonaccorsi, John P., 2008. "Density Estimation in the Presence of Heteroscedastic Measurement Error," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 726-736, June.
    19. F. Kahrari & C. S. Ferreira & R. B. Arellano-Valle, 2019. "Skew-Normal-Cauchy Linear Mixed Models," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 81(2), pages 185-202, December.
    20. Pires, Rubiane M. & Diniz, Carlos A.R., 2012. "Correlated binomial regression models," Computational Statistics & Data Analysis, Elsevier, vol. 56(8), pages 2513-2525.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:115:y:2013:i:c:p:68-83. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.