IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v114y2013icp256-269.html
   My bibliography  Save this article

The multivariate Watson distribution: Maximum-likelihood estimation and other aspects

Author

Listed:
  • Sra, Suvrit
  • Karp, Dmitrii

Abstract

This paper studies fundamental aspects of modelling data using multivariate Watson distributions. Although these distributions are natural for modelling axially symmetric data (i.e., unit vectors where ±x are equivalent), for high-dimensions using them can be difficult—largely because for Watson distributions even basic tasks such as maximum-likelihood are numerically challenging. To tackle the numerical difficulties some approximations have been derived. But these are either grossly inaccurate in high-dimensions [K.V. Mardia, P. Jupp, Directional Statistics, second ed., John Wiley & Sons, 2000] or when reasonably accurate [A. Bijral, M. Breitenbach, G.Z. Grudic, Mixture of Watson distributions: a generative model for hyperspherical embeddings, in: Artificial Intelligence and Statistics, AISTATS 2007, 2007, pp. 35–42], they lack theoretical justification. We derive new approximations to the maximum-likelihood estimates; our approximations are theoretically well-defined, numerically accurate, and easy to compute. We build on our parameter estimation and discuss mixture-modelling with Watson distributions; here we uncover a hitherto unknown connection to the “diametrical clustering” algorithm of Dhillon et al. [I.S. Dhillon, E.M. Marcotte, U. Roshan, Diametrical clustering for identifying anticorrelated gene clusters, Bioinformatics 19 (13) (2003) 1612–1619].

Suggested Citation

  • Sra, Suvrit & Karp, Dmitrii, 2013. "The multivariate Watson distribution: Maximum-likelihood estimation and other aspects," Journal of Multivariate Analysis, Elsevier, vol. 114(C), pages 256-269.
  • Handle: RePEc:eee:jmvana:v:114:y:2013:i:c:p:256-269
    DOI: 10.1016/j.jmva.2012.08.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X12002084
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2012.08.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Akihiro Tanabe & Kenji Fukumizu & Shigeyuki Oba & Takashi Takenouchi & Shin Ishii, 2007. "Parameter estimation for von Mises–Fisher distributions," Computational Statistics, Springer, vol. 22(1), pages 145-157, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jay Damask, 2019. "A Consistently Oriented Basis for Eigenanalysis," Papers 1912.12983, arXiv.org.
    2. Arthur Pewsey & Eduardo García-Portugués, 2021. "Recent advances in directional statistics," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(1), pages 1-58, March.
    3. Angela Montanari & Daniela Calò, 2013. "Model-based clustering of probability density functions," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 7(3), pages 301-319, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Biswas, Atanu & Jha, Jayant & Dutta, Somak, 2016. "Modelling circular random variables with a spike at zero," Statistics & Probability Letters, Elsevier, vol. 109(C), pages 194-201.
    2. Árpád Baricz, 2014. "Remarks on a parameter estimation for von Mises–Fisher distributions," Computational Statistics, Springer, vol. 29(3), pages 891-894, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:114:y:2013:i:c:p:256-269. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.