IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v100y2009i1p231-242.html
   My bibliography  Save this article

High-dimensional asymptotic expansions for the distributions of canonical correlations

Author

Listed:
  • Fujikoshi, Yasunori
  • Sakurai, Tetsuro

Abstract

This paper examines asymptotic distributions of the canonical correlations between and with q [infinity] and c=p/n-->c0[set membership, variant][0,1), assuming that and have a joint (q+p)-variate normal distribution. An extended Fisher's z-transformation is proposed. Then, the asymptotic distributions are improved further by deriving their asymptotic expansions. Numerical simulations revealed that our approximations are more accurate than the classical approximations for a large range of p,q, and n and the population canonical correlations.

Suggested Citation

  • Fujikoshi, Yasunori & Sakurai, Tetsuro, 2009. "High-dimensional asymptotic expansions for the distributions of canonical correlations," Journal of Multivariate Analysis, Elsevier, vol. 100(1), pages 231-242, January.
  • Handle: RePEc:eee:jmvana:v:100:y:2009:i:1:p:231-242
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(08)00112-7
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Raudys, Sarunas & Young, Dean M., 2004. "Results in statistical discriminant analysis: a review of the former Soviet Union literature," Journal of Multivariate Analysis, Elsevier, vol. 89(1), pages 1-35, April.
    2. James R. Schott, 2005. "Testing for complete independence in high dimensions," Biometrika, Biometrika Trust, vol. 92(4), pages 951-956, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiasen Zheng & Lixing Zhu, 2021. "Determining the number of canonical correlation pairs for high-dimensional vectors," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(4), pages 737-756, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qiu, Yumou & Chen, Songxi, 2012. "Test for Bandedness of High Dimensional Covariance Matrices with Bandwidth Estimation," MPRA Paper 46242, University Library of Munich, Germany.
    2. Yukun Liu & Changliang Zou & Zhaojun Wang, 2013. "Calibration of the empirical likelihood for high-dimensional data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 65(3), pages 529-550, June.
    3. Mao, Guangyu, 2018. "Testing independence in high dimensions using Kendall’s tau," Computational Statistics & Data Analysis, Elsevier, vol. 117(C), pages 128-137.
    4. Schott, James R., 2008. "A test for independence of two sets of variables when the number of variables is large relative to the sample size," Statistics & Probability Letters, Elsevier, vol. 78(17), pages 3096-3102, December.
    5. Badi H. Baltagi & Chihwa Kao & Long Liu, 2013. "The Estimation and Testing of a Linear Regression with Near Unit Root in the Spatial Autoregressive Error Term," Spatial Economic Analysis, Taylor & Francis Journals, vol. 8(3), pages 241-270, September.
    6. Wei Lan & Ronghua Luo & Chih-Ling Tsai & Hansheng Wang & Yunhong Yang, 2015. "Testing the Diagonality of a Large Covariance Matrix in a Regression Setting," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(1), pages 76-86, January.
    7. Guanghui Cheng & Zhengjun Zhang & Baoxue Zhang, 2017. "Test for bandedness of high-dimensional precision matrices," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 29(4), pages 884-902, October.
    8. Mao, Guangyu, 2015. "A note on testing complete independence for high dimensional data," Statistics & Probability Letters, Elsevier, vol. 106(C), pages 82-85.
    9. Mingyue Hu & Yongcheng Qi, 2023. "Limiting distributions of the likelihood ratio test statistics for independence of normal random vectors," Statistical Papers, Springer, vol. 64(3), pages 923-954, June.
    10. Amin Zollanvari & Alex Pappachen James & Reza Sameni, 2020. "A Theoretical Analysis of the Peaking Phenomenon in Classification," Journal of Classification, Springer;The Classification Society, vol. 37(2), pages 421-434, July.
    11. Baltagi, Badi H. & Feng, Qu & Kao, Chihwa, 2012. "A Lagrange Multiplier test for cross-sectional dependence in a fixed effects panel data model," Journal of Econometrics, Elsevier, vol. 170(1), pages 164-177.
    12. He, Daojiang & Liu, Huanyu & Xu, Kai & Cao, Mingxiang, 2021. "Generalized Schott type tests for complete independence in high dimensions," Journal of Multivariate Analysis, Elsevier, vol. 183(C).
    13. Fujikoshi, Yasunori & Sakurai, Tetsuro & Yanagihara, Hirokazu, 2014. "Consistency of high-dimensional AIC-type and Cp-type criteria in multivariate linear regression," Journal of Multivariate Analysis, Elsevier, vol. 123(C), pages 184-200.
    14. Tiefeng Jiang & Yongcheng Qi, 2015. "Likelihood Ratio Tests for High-Dimensional Normal Distributions," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(4), pages 988-1009, December.
    15. Mansoor Sheikh & A. C. C. Coolen, 2020. "Accurate Bayesian Data Classification Without Hyperparameter Cross-Validation," Journal of Classification, Springer;The Classification Society, vol. 37(2), pages 277-297, July.
    16. Wang, Guanghui & Zou, Changliang & Wang, Zhaojun, 2013. "A necessary test for complete independence in high dimensions using rank-correlations," Journal of Multivariate Analysis, Elsevier, vol. 121(C), pages 224-232.
    17. Sakurai, Tetsuro, 2012. "Limiting distributions of high-dimensional multivariate Beta-type distributions," Journal of Multivariate Analysis, Elsevier, vol. 111(C), pages 110-119.
    18. Wang, Hongfei & Liu, Binghui & Feng, Long & Ma, Yanyuan, 2024. "Rank-based max-sum tests for mutual independence of high-dimensional random vectors," Journal of Econometrics, Elsevier, vol. 238(1).
    19. Changliang Zou & Liuhua Peng & Long Feng & Zhaojun Wang, 2014. "Multivariate sign-based high-dimensional tests for sphericity," Biometrika, Biometrika Trust, vol. 101(1), pages 229-236.
    20. Yamada, Yuki & Hyodo, Masashi & Nishiyama, Takahiro, 2017. "Testing block-diagonal covariance structure for high-dimensional data under non-normality," Journal of Multivariate Analysis, Elsevier, vol. 155(C), pages 305-316.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:100:y:2009:i:1:p:231-242. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.