IDEAS home Printed from https://ideas.repec.org/a/eee/jimfin/v129y2022ics0261560622001383.html
   My bibliography  Save this article

How severe are the EBA macroeconomic scenarios for the Italian Economy? A joint probability approach

Author

Listed:
  • Bonucchi, Manuel
  • Catalano, Michele

Abstract

Measures of the severity of macroeconomic scenarios have been widely used in the literature, but a consistent methodology for their calculation has not been developed yet. Against this background, we provide a general method for calculating the joint probability of observing a macroeconomic scenario, which can be applied to various structural models. By doing so, we can attach probabilities to scenarios produced with multidimensional economic models to compare their severity and plausibility. We apply our methodology to the 2016 and 2018 EBA stress test scenarios and also provide reverse stress test applications. Our results show that for the Italian economy, the 2016 and 2018 EBA scenarios are unlikely, especially the 2016 one. The reverse stress tests allow us to identify the key variables that affect our probabilities.

Suggested Citation

  • Bonucchi, Manuel & Catalano, Michele, 2022. "How severe are the EBA macroeconomic scenarios for the Italian Economy? A joint probability approach," Journal of International Money and Finance, Elsevier, vol. 129(C).
  • Handle: RePEc:eee:jimfin:v:129:y:2022:i:c:s0261560622001383
    DOI: 10.1016/j.jimonfin.2022.102735
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0261560622001383
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jimonfin.2022.102735?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Thomas Breuer & Martin Summer, 2018. "Systematic Systemic Stress Tests," Working Papers 225, Oesterreichische Nationalbank (Austrian Central Bank).
    2. Borio, Claudio & Drehmann, Mathias & Tsatsaronis, Kostas, 2014. "Stress-testing macro stress testing: Does it live up to expectations?," Journal of Financial Stability, Elsevier, vol. 12(C), pages 3-15.
    3. Kanas, Angelos & Molyneux, Philip, 2018. "Macro stress testing the U.S. banking system," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 54(C), pages 204-227.
    4. Paul Glasserman & Chulmin Kang & Wanmo Kang, 2015. "Stress scenario selection by empirical likelihood," Quantitative Finance, Taylor & Francis Journals, vol. 15(1), pages 25-41, January.
    5. Oriol Carreras & E Philip Davis & Ian Hurst & Iana Liadze & Rebecca Piggott & James Warren, 2018. "Implementing Macroprudential Policy in NiGEM," National Institute of Economic and Social Research (NIESR) Discussion Papers 490, National Institute of Economic and Social Research.
    6. Pritsker, Matthew, 2013. "Knightian uncertainty and interbank lending," Journal of Financial Intermediation, Elsevier, vol. 22(1), pages 85-105.
    7. Breuer, Thomas & Summer, Martin, 2020. "Systematic stress tests on public data," Journal of Banking & Finance, Elsevier, vol. 118(C).
    8. Thomas Breuer & Martin Jandacka & Klaus Rheinberger & Martin Summer, 2009. "How to Find Plausible, Severe and Useful Stress Scenarios," International Journal of Central Banking, International Journal of Central Banking, vol. 5(3), pages 205-224, September.
    9. Castrén, Olli & Dées, Stéphane & Zaher, Fadi, 2010. "Stress-testing euro area corporate default probabilities using a global macroeconomic model," Journal of Financial Stability, Elsevier, vol. 6(2), pages 64-78, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aikman, David & Angotti, Romain & Budnik, Katarzyna, 2024. "Stress testing with multiple scenarios: a tale on tails and reverse stress scenarios," Working Paper Series 2941, European Central Bank.
    2. Mr. Dimitri G Demekas, 2015. "Designing Effective Macroprudential Stress Tests: Progress So Far and the Way Forward," IMF Working Papers 2015/146, International Monetary Fund.
    3. Gloria Gonzalez-Rivera & Vladimir Rodriguez-Caballero & Esther Ruiz, 2021. "Expecting the unexpected: economic growth under stress," Working Papers 202106, University of California at Riverside, Department of Economics.
    4. Matthew Pritsker, 2017. "Choosing Stress Scenarios for Systemic Risk Through Dimension Reduction," Supervisory Research and Analysis Working Papers RPA 17-4, Federal Reserve Bank of Boston.
    5. Marco Gross & Javier Población, 2019. "Implications of Model Uncertainty for Bank Stress Testing," Journal of Financial Services Research, Springer;Western Finance Association, vol. 55(1), pages 31-58, February.
    6. Darné, Olivier & Levy-Rueff, Guy & Pop, Adrian, 2024. "The calibration of initial shocks in bank stress test scenarios: An outlier detection based approach," Economic Modelling, Elsevier, vol. 136(C).
    7. Wang, Zheqi & Crook, Jonathan & Andreeva, Galina, 2020. "Reducing estimation risk using a Bayesian posterior distribution approach: Application to stress testing mortgage loan default," European Journal of Operational Research, Elsevier, vol. 287(2), pages 725-738.
    8. Bookstaber, Rick & Cetina, Jill & Feldberg, Greg & Flood, Mark & Glasserman, Paul, 2013. "Stress tests to promote financial stability: Assessing progress and looking to the future," Journal of Risk Management in Financial Institutions, Henry Stewart Publications, vol. 7(1), pages 16-25, December.
    9. N. Packham & F. Woebbeking, 2021. "Correlation scenarios and correlation stress testing," Papers 2107.06839, arXiv.org, revised Sep 2022.
    10. Adam Gersl & Petr Jakubik & Tomas Konecny & Jakub Seidler, 2012. "Dynamic Stress Testing: The Framework for Testing Banking Sector Resilience Used by the Czech National Bank," Working Papers 2012/11, Czech National Bank.
    11. Paul Glasserman & Chulmin Kang & Wanmo Kang, 2013. "Stress Scenario Selection by Empirical Likelihood," Working Papers 13-07, Office of Financial Research, US Department of the Treasury.
    12. Jokivuolle, Esa & Pesola, Jarmo & Viren, Matti, 2015. "Why is credit-to-GDP a good measure for setting countercyclical capital buffers?," Journal of Financial Stability, Elsevier, vol. 18(C), pages 117-126.
    13. Packham, Natalie & Woebbeking, Fabian, 2021. "Correlation scenarios and correlation stress testing," IRTG 1792 Discussion Papers 2021-012, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    14. Giuseppe Montesi & Giovanni Papiro & Massimiliano Fazzini & Alessandro Ronga, 2020. "Stochastic Optimization System for Bank Reverse Stress Testing," JRFM, MDPI, vol. 13(8), pages 1-44, August.
    15. Adam Gersl & Jakub Seidler, 2012. "How to Improve the Quality of Stress Tests through Backtesting," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 62(4), pages 325-346, August.
    16. Kolari, James W. & López-Iturriaga, Félix J. & Sanz, Ivan Pastor, 2019. "Predicting European bank stress tests: Survival of the fittest," Global Finance Journal, Elsevier, vol. 39(C), pages 44-57.
    17. Michel Baes & Eric Schaanning, 2023. "Reverse stress testing: Scenario design for macroprudential stress tests," Mathematical Finance, Wiley Blackwell, vol. 33(2), pages 209-256, April.
    18. Andrew McKenna & Rhys Bidder, 2014. "Robust Stress Testing," 2014 Meeting Papers 853, Society for Economic Dynamics.
    19. Mokinski, Frieder, 2017. "A severity function approach to scenario selection," Discussion Papers 34/2017, Deutsche Bundesbank.
    20. Adam Gersl & Petr Jakubik & Tomas Konecny & Jakub Seidler, 2013. "Dynamic Stress Testing: The Framework for Assessing the Resilience of the Banking Sector Used by the Czech National Bank," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 63(6), pages 505-536, December.

    More about this item

    Keywords

    Multiple simultaneous equation models; Stress tests; Financial instability; Macroprudential; Joint probability;
    All these keywords.

    JEL classification:

    • C30 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - General
    • E30 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - General (includes Measurement and Data)
    • E44 - Macroeconomics and Monetary Economics - - Money and Interest Rates - - - Financial Markets and the Macroeconomy
    • G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)
    • G20 - Financial Economics - - Financial Institutions and Services - - - General
    • G28 - Financial Economics - - Financial Institutions and Services - - - Government Policy and Regulation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jimfin:v:129:y:2022:i:c:s0261560622001383. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/30443 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.