IDEAS home Printed from https://ideas.repec.org/a/eee/jetheo/v204y2022ics0022053122001028.html
   My bibliography  Save this article

Coalitional strategic games

Author

Listed:
  • Hara, Kazuhiro

Abstract

In pursuit of games played by groups of individuals (each group itself being a player), we develop a theory of strategic games in which each player is rational in the sense of expected utility theory, except that her preferences may fail to be transitive. Two natural solution concepts are defined, Nash equilibrium and the equilibrium in beliefs, depending on the interpretation of mixed strategies. We provide sufficient conditions for the existence of both equilibrium concepts. For instance, it turns out that an equilibrium is sure to exist if each player possesses two pure strategies (and may have cyclic preferences across pure and mixed strategy profiles), without any further qualifications. To go beyond equilibrium existence, we use the coalitional expected utility representation by Hara et al. (2019) and characterize the set of Nash equilibria in terms of this representation. We also study rationalizability in such games (without transitivity), as well as some equilibrium refinements, and compare our findings with those of standard game theory. Our investigation is meant to be a step toward understanding the nature of strategic interaction across groups of individuals and clarifying the role of transitivity in game theory.

Suggested Citation

  • Hara, Kazuhiro, 2022. "Coalitional strategic games," Journal of Economic Theory, Elsevier, vol. 204(C).
  • Handle: RePEc:eee:jetheo:v:204:y:2022:i:c:s0022053122001028
    DOI: 10.1016/j.jet.2022.105512
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0022053122001028
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jet.2022.105512?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yannelis, Nicholas C. & Prabhakar, N. D., 1983. "Existence of maximal elements and equilibria in linear topological spaces," Journal of Mathematical Economics, Elsevier, vol. 12(3), pages 233-245, December.
    2. Evren, Özgür, 2014. "Scalarization methods and expected multi-utility representations," Journal of Economic Theory, Elsevier, vol. 151(C), pages 30-63.
    3. Crawford, Vincent P., 1990. "Equilibrium without independence," Journal of Economic Theory, Elsevier, vol. 50(1), pages 127-154, February.
    4. Shafer, Wayne & Sonnenschein, Hugo, 1975. "Equilibrium in abstract economies without ordered preferences," Journal of Mathematical Economics, Elsevier, vol. 2(3), pages 345-348, December.
    5. Ichiishi, Tatsuro, 1981. "A Social Coalitional Equilibrium Existence Lemma," Econometrica, Econometric Society, vol. 49(2), pages 369-377, March.
    6. Pearce, David G, 1984. "Rationalizable Strategic Behavior and the Problem of Perfection," Econometrica, Econometric Society, vol. 52(4), pages 1029-1050, July.
    7. Peter A. Diamond, 1967. "Cardinal Welfare, Individualistic Ethics, and Interpersonal Comparison of Utility: Comment," Journal of Political Economy, University of Chicago Press, vol. 75(5), pages 765-765.
    8. Martin Dufwenberg & Mark Stegeman, 2002. "Existence and Uniqueness of Maximal Reductions Under Iterated Strict Dominance," Econometrica, Econometric Society, vol. 70(5), pages 2007-2023, September.
    9. Blume, Lawrence & Brandenburger, Adam & Dekel, Eddie, 1991. "Lexicographic Probabilities and Equilibrium Refinements," Econometrica, Econometric Society, vol. 59(1), pages 81-98, January.
    10. Rida Laraki, 2009. "Coalitional Equilibria of Strategic Games," Working Papers hal-00429293, HAL.
    11. Dubra, Juan & Maccheroni, Fabio & Ok, Efe A., 2004. "Expected utility theory without the completeness axiom," Journal of Economic Theory, Elsevier, vol. 115(1), pages 118-133, March.
    12. Kazuhiro Hara & Efe A. Ok & Gil Riella, 2019. "Coalitional Expected Multi‐Utility Theory," Econometrica, Econometric Society, vol. 87(3), pages 933-980, May.
    13. Bernheim, B Douglas, 1984. "Rationalizable Strategic Behavior," Econometrica, Econometric Society, vol. 52(4), pages 1007-1028, July.
    14. Lawrence Blume & Adam Brandenburger & Eddie Dekel, 2014. "Lexicographic Probabilities and Choice Under Uncertainty," World Scientific Book Chapters, in: The Language of Game Theory Putting Epistemics into the Mathematics of Games, chapter 6, pages 137-160, World Scientific Publishing Co. Pte. Ltd..
    15. Antonio Quesada, 2003. "Negative results in the theory of games with lexicographic utilities," Economics Bulletin, AccessEcon, vol. 3(20), pages 1-7.
    16. Zhao, Jingang, 1992. "The hybrid solutions of an N-person game," Games and Economic Behavior, Elsevier, vol. 4(1), pages 145-160, January.
    17. Sophie Bade, 2005. "Nash equilibrium in games with incomplete preferences," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 26(2), pages 309-332, August.
    18. Bernheim, B. Douglas & Peleg, Bezalel & Whinston, Michael D., 1987. "Coalition-Proof Nash Equilibria I. Concepts," Journal of Economic Theory, Elsevier, vol. 42(1), pages 1-12, June.
    19. Dekel, Eddie & Safra, Zvi & Segal, Uzi, 1991. "Existence and dynamic consistency of Nash equilibrium with non-expected utility preferences," Journal of Economic Theory, Elsevier, vol. 55(2), pages 229-246, December.
    20. Grandmont, Jean-Michel, 1972. "Continuity properties of a von Neumann-Morgenstern utility," Journal of Economic Theory, Elsevier, vol. 4(1), pages 45-57, February.
    21. Fishburn, Peter C. & Rosenthal, Robert W., 1986. "Noncooperative games and nontransitive preferences," Mathematical Social Sciences, Elsevier, vol. 12(1), pages 1-7, August.
    22. Mas-Colell, Andrew, 1974. "An equilibrium existence theorem without complete or transitive preferences," Journal of Mathematical Economics, Elsevier, vol. 1(3), pages 237-246, December.
    23. L. S. Shapley & Fred D. Rigby, 1959. "Equilibrium points in games with vector payoffs," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 6(1), pages 57-61, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. De Magistris, Enrico, 2024. "Incomplete preferences or incomplete information? On Rationalizability in games with private values," Games and Economic Behavior, Elsevier, vol. 144(C), pages 126-140.
    2. Ray, Debraj & Vohra, Rajiv, 1997. "Equilibrium Binding Agreements," Journal of Economic Theory, Elsevier, vol. 73(1), pages 30-78, March.
    3. M. Ali Khan & Metin Uyanık, 2021. "Topological connectedness and behavioral assumptions on preferences: a two-way relationship," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 71(2), pages 411-460, March.
    4. Juho Kokkala & Kimmo Berg & Kai Virtanen & Jirka Poropudas, 2019. "Rationalizable strategies in games with incomplete preferences," Theory and Decision, Springer, vol. 86(2), pages 185-204, March.
    5. David McCarthy & Kalle Mikkola & Teruji Thomas, 2019. "Aggregation for potentially infinite populations without continuity or completeness," Papers 1911.00872, arXiv.org.
    6. Asheim, Geir B. & Dufwenberg, Martin, 2003. "Admissibility and common belief," Games and Economic Behavior, Elsevier, vol. 42(2), pages 208-234, February.
    7. Heifetz, Aviad & Meier, Martin & Schipper, Burkhard C., 2019. "Comprehensive rationalizability," Games and Economic Behavior, Elsevier, vol. 116(C), pages 185-202.
    8. Yang, Zhe & Yuan, George Xianzhi, 2019. "Some generalizations of Zhao’s theorem: Hybrid solutions and weak hybrid solutions for games with nonordered preferences," Journal of Mathematical Economics, Elsevier, vol. 84(C), pages 94-100.
    9. Perea Andrés, 2003. "Rationalizability and Minimal Complexity in Dynamic Games," Research Memorandum 047, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
    10. Gorno, Leandro & Rivello, Alessandro T., 2023. "A maximum theorem for incomplete preferences," Journal of Mathematical Economics, Elsevier, vol. 106(C).
    11. Dekel, Eddie & Siniscalchi, Marciano, 2015. "Epistemic Game Theory," Handbook of Game Theory with Economic Applications,, Elsevier.
    12. Keisler, H. Jerome & Lee, Byung Soo, 2011. "Common assumption of rationality," MPRA Paper 34441, University Library of Munich, Germany.
    13. J. C. R. Alcantud & Carlos Alós-Ferrer, 2002. "Choice-Nash Equilibria," Vienna Economics Papers vie0209, University of Vienna, Department of Economics.
    14. Luo, Xiao & Yang, Chih-Chun, 2009. "Bayesian coalitional rationalizability," Journal of Economic Theory, Elsevier, vol. 144(1), pages 248-263, January.
    15. Xiao Luo & Ben Wang, 2022. "An epistemic characterization of MACA," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 73(4), pages 995-1024, June.
    16. Kin Chung Lo, 1999. "Nash equilibrium without mutual knowledge of rationality," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 14(3), pages 621-633.
    17. Alexander Zimper, 2007. "Strategic games with security and potential level players," Theory and Decision, Springer, vol. 63(1), pages 53-78, August.
    18. Lan Di & George X. Yuan & Tu Zeng, 2021. "The consensus equilibria of mining gap games related to the stability of Blockchain Ecosystems," The European Journal of Finance, Taylor & Francis Journals, vol. 27(4-5), pages 419-440, March.
    19. McCarthy, David & Mikkola, Kalle & Thomas, Teruji, 2020. "Utilitarianism with and without expected utility," Journal of Mathematical Economics, Elsevier, vol. 87(C), pages 77-113.
    20. Sasaki, Yasuo, 2022. "Unawareness of decision criteria in multicriteria games," Mathematical Social Sciences, Elsevier, vol. 119(C), pages 31-40.

    More about this item

    Keywords

    Nontransitive preference; Coalition; Expected utility; Game theory;
    All these keywords.

    JEL classification:

    • C70 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - General
    • C72 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Noncooperative Games
    • D80 - Microeconomics - - Information, Knowledge, and Uncertainty - - - General
    • D81 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Criteria for Decision-Making under Risk and Uncertainty

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jetheo:v:204:y:2022:i:c:s0022053122001028. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/622869 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.