IDEAS home Printed from https://ideas.repec.org/a/eee/jbrese/v156y2023ics0148296322010037.html
   My bibliography  Save this article

Mind the fake reviews! Protecting consumers from deception through persuasion knowledge acquisition

Author

Listed:
  • Costa Filho, Murilo
  • Nogueira Rafael, Diego
  • Salmonson Guimarães Barros, Lucia
  • Mesquita, Eduardo

Abstract

A growing body of research has shown that while computers can effectively detect fake reviews, humans are no more accurate than chance. Since consumers strongly trust online reviews, and fake reviews are pervasive, they often make suboptimal choices. However, whether consumers can learn to detect fake reviews and whether this knowledge would help them make better-informed decisions remain open questions. We propose that learning four distinctive features of fake reviews (one-sidedness, exaggeration, personal selling style, and generic descriptions) affects consumers’ trustworthiness in them and their perceived favorability, thus affecting their purchase intentions toward the target product. Five studies support our theoretical model. We also show that one-sidedness is the most discriminating among the four features and that simply activating consumers’ current knowledge is not enough to protect them from fake reviews.

Suggested Citation

  • Costa Filho, Murilo & Nogueira Rafael, Diego & Salmonson Guimarães Barros, Lucia & Mesquita, Eduardo, 2023. "Mind the fake reviews! Protecting consumers from deception through persuasion knowledge acquisition," Journal of Business Research, Elsevier, vol. 156(C).
  • Handle: RePEc:eee:jbrese:v:156:y:2023:i:c:s0148296322010037
    DOI: 10.1016/j.jbusres.2022.113538
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0148296322010037
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jbusres.2022.113538?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Salminen, Joni & Kandpal, Chandrashekhar & Kamel, Ahmed Mohamed & Jung, Soon-gyo & Jansen, Bernard J., 2022. "Creating and detecting fake reviews of online products," Journal of Retailing and Consumer Services, Elsevier, vol. 64(C).
    2. Dina Mayzlin & Yaniv Dover & Judith Chevalier, 2014. "Promotional Reviews: An Empirical Investigation of Online Review Manipulation," American Economic Review, American Economic Association, vol. 104(8), pages 2421-2455, August.
    3. Filieri, Raffaele, 2016. "What makes an online consumer review trustworthy?," Annals of Tourism Research, Elsevier, vol. 58(C), pages 46-64.
    4. Michael Anderson & Jeremy Magruder, 2012. "Learning from the Crowd: Regression Discontinuity Estimates of the Effects of an Online Review Database," Economic Journal, Royal Economic Society, vol. 122(563), pages 957-989, September.
    5. Andreas Munzel, 2016. "Assisting consumers in detecting fake reviews: The role of identity information disclosure and consensus," Post-Print hal-02423574, HAL.
    6. Costa, Ana & Guerreiro, João & Moro, Sérgio & Henriques, Roberto, 2019. "Unfolding the characteristics of incentivized online reviews," Journal of Retailing and Consumer Services, Elsevier, vol. 47(C), pages 272-281.
    7. Munzel, Andreas, 2016. "Assisting consumers in detecting fake reviews: The role of identity information disclosure and consensus," Journal of Retailing and Consumer Services, Elsevier, vol. 32(C), pages 96-108.
    8. Campbell, Margaret C & Kirmani, Amna, 2000. "Consumers' Use of Persuasion Knowledge: The Effects of Accessibility and Cognitive Capacity on Perceptions of an Influence Agent," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 27(1), pages 69-83, June.
    9. Andreas Munzel, 2015. "Malicious practice of fake reviews: Experimental insight into the potential of contextual indicators in assisting consumers to detect deceptive opinion spam," Post-Print hal-02423578, HAL.
    10. Friestad, Marian & Wright, Peter, 1994. "The Persuasion Knowledge Model: How People Cope with Persuasion Attempts," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 21(1), pages 1-31, June.
    11. Andreas Munzel, 2016. "Assisting consumers in detecting fake reviews: The role of identity information disclosure and consensus," Post-Print halshs-01522497, HAL.
    12. Stefan Gössling & C. Michael Hall & Ann-Christin Andersson, 2018. "The manager's dilemma: a conceptualization of online review manipulation strategies," Current Issues in Tourism, Taylor & Francis Journals, vol. 21(5), pages 484-503, March.
    13. Bastos, Wilson & Moore, Sarah G., 2021. "Making word-of-mouth impactful: Why consumers react more to WOM about experiential than material purchases," Journal of Business Research, Elsevier, vol. 130(C), pages 110-123.
    14. Bambauer-Sachse, Silke & Mangold, Sabrina, 2013. "Do consumers still believe what is said in online product reviews? A persuasion knowledge approach," Journal of Retailing and Consumer Services, Elsevier, vol. 20(4), pages 373-381.
    15. Moon, Sangkil & Kim, Moon-Yong & Iacobucci, Dawn, 2021. "Content analysis of fake consumer reviews by survey-based text categorization," International Journal of Research in Marketing, Elsevier, vol. 38(2), pages 343-364.
    16. Moon, Sangkil & Kim, Moon-Yong & Bergey, Paul K., 2019. "Estimating deception in consumer reviews based on extreme terms: Comparison analysis of open vs. closed hotel reservation platforms," Journal of Business Research, Elsevier, vol. 102(C), pages 83-96.
    17. Anne Hamby & David Brinberg, 2018. "Cause‐Related Marketing Persuasion Knowledge: Measuring Consumers' Knowledge and Ability to Interpret CrM Promotions," Journal of Consumer Affairs, Wiley Blackwell, vol. 52(2), pages 373-392, July.
    18. Banerjee, Snehasish, 2022. "Exaggeration in fake vs. authentic online reviews for luxury and budget hotels," International Journal of Information Management, Elsevier, vol. 62(C).
    19. Zhuang, Mengzhou & Cui, Geng & Peng, Ling, 2018. "Manufactured opinions: The effect of manipulating online product reviews," Journal of Business Research, Elsevier, vol. 87(C), pages 24-35.
    20. Michael Luca & Georgios Zervas, 2016. "Fake It Till You Make It: Reputation, Competition, and Yelp Review Fraud," Management Science, INFORMS, vol. 62(12), pages 3412-3427, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wu, Jie & Zhao, Narisa & Yang, Tong, 2024. "Wisdom of crowds: SWOT analysis based on hybrid text mining methods using online reviews," Journal of Business Research, Elsevier, vol. 171(C).
    2. Qin-Min Wu, 2024. "The Influence of Online Reviews on the Purchasing Decisions of Travel Consumers," Sustainability, MDPI, vol. 16(8), pages 1-17, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Birim, Şule Öztürk & Kazancoglu, Ipek & Kumar Mangla, Sachin & Kahraman, Aysun & Kumar, Satish & Kazancoglu, Yigit, 2022. "Detecting fake reviews through topic modelling," Journal of Business Research, Elsevier, vol. 149(C), pages 884-900.
    2. Mardumyan, Anna & Siret, Iris, 2023. "When review verification does more harm than good: How certified reviews determine customer–brand relationship quality," Journal of Business Research, Elsevier, vol. 160(C).
    3. Harrison-Walker, L. Jean & Jiang, Ying, 2023. "Suspicion of online product reviews as fake: Cues and consequences," Journal of Business Research, Elsevier, vol. 160(C).
    4. Petrescu, Maria & Ajjan, Haya & Harrison, Dana L., 2023. "Man vs machine – Detecting deception in online reviews," Journal of Business Research, Elsevier, vol. 154(C).
    5. Könsgen, Raoul & Schaarschmidt, Mario & Ivens, Stefan & Munzel, Andreas, 2018. "Finding Meaning in Contradiction on Employee Review Sites — Effects of Discrepant Online Reviews on Job Application Intentions," Journal of Interactive Marketing, Elsevier, vol. 43(C), pages 165-177.
    6. Moon, Sangkil & Kim, Moon-Yong & Iacobucci, Dawn, 2021. "Content analysis of fake consumer reviews by survey-based text categorization," International Journal of Research in Marketing, Elsevier, vol. 38(2), pages 343-364.
    7. Wen Zhang & Qiang Wang & Jian Li & Zhenzhong Ma & Gokul Bhandari & Rui Peng, 2023. "What makes deceptive online reviews? A linguistic analysis perspective," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-14, December.
    8. Petrescu, Maria & O’Leary, Kathleen & Goldring, Deborah & Ben Mrad, Selima, 2018. "Incentivized reviews: Promising the moon for a few stars," Journal of Retailing and Consumer Services, Elsevier, vol. 41(C), pages 288-295.
    9. Hui Zhao & Xiaoyuan Wang & Debing Ni & Kevin W. Li, 2023. "The Quality-Signaling Role of Manipulated Consumer Reviews," Group Decision and Negotiation, Springer, vol. 32(3), pages 503-536, June.
    10. Plotkina, Daria & Munzel, Andreas & Pallud, Jessie, 2020. "Illusions of truth—Experimental insights into human and algorithmic detections of fake online reviews," Journal of Business Research, Elsevier, vol. 109(C), pages 511-523.
    11. Zhuang, Mengzhou & Cui, Geng & Peng, Ling, 2018. "Manufactured opinions: The effect of manipulating online product reviews," Journal of Business Research, Elsevier, vol. 87(C), pages 24-35.
    12. Hajek, Petr & Hikkerova, Lubica & Sahut, Jean-Michel, 2023. "Fake review detection in e-Commerce platforms using aspect-based sentiment analysis," Journal of Business Research, Elsevier, vol. 167(C).
    13. Salminen, Joni & Kandpal, Chandrashekhar & Kamel, Ahmed Mohamed & Jung, Soon-gyo & Jansen, Bernard J., 2022. "Creating and detecting fake reviews of online products," Journal of Retailing and Consumer Services, Elsevier, vol. 64(C).
    14. Li, Yuanshuo & Zhang, Zili & Pedersen, Susanne & Liu, Xudong & Zhang, Ziqiong, 2023. "The influence of relative popularity on negative fake reviews: A case study on restaurant reviews," Journal of Business Research, Elsevier, vol. 162(C).
    15. Perez, Dikla & Stockheim, Inbal & Baratz, Guy, 2022. "Complimentary competition: The impact of positive competitor reviews on review credibility and consumer purchase intentions," Journal of Retailing and Consumer Services, Elsevier, vol. 69(C).
    16. Koukova, Nevena T. & Wang, Rebecca Jen-Hui & Isaac, Mathew S., 2023. "“If you loved our product”: Do conditional review requests harm retailer loyalty?," Journal of Retailing, Elsevier, vol. 99(1), pages 85-101.
    17. Ko, Eunhee Emily & Bowman, Douglas, 2023. "Suspicious online product reviews: An empirical analysis of brand and product characteristics using Amazon data," International Journal of Research in Marketing, Elsevier, vol. 40(4), pages 898-911.
    18. Román, Sergio & Riquelme, Isabel P. & Iacobucci, Dawn, 2023. "Fake or credible? Antecedents and consequences of perceived credibility in exaggerated online reviews," Journal of Business Research, Elsevier, vol. 156(C).
    19. Costa, Ana & Guerreiro, João & Moro, Sérgio & Henriques, Roberto, 2019. "Unfolding the characteristics of incentivized online reviews," Journal of Retailing and Consumer Services, Elsevier, vol. 47(C), pages 272-281.
    20. Munzel, Andreas, 2016. "Assisting consumers in detecting fake reviews: The role of identity information disclosure and consensus," Journal of Retailing and Consumer Services, Elsevier, vol. 32(C), pages 96-108.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jbrese:v:156:y:2023:i:c:s0148296322010037. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jbusres .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.