IDEAS home Printed from https://ideas.repec.org/a/eee/jaitra/v109y2023ics0969699723000388.html
   My bibliography  Save this article

The adjusted passenger transportation efficiency of nine airports in China with consideration of the impact of high-speed rail network development: A two-step DEA-OLS method

Author

Listed:
  • Wei, Ming
  • Zhang, Shaopeng
  • Liu, Tao
  • Sun, Bo

Abstract

This paper presents a two-step method combining data envelopment analysis (DEA) and an ordinary least squares (OLS) model to analyze the passenger transportation efficiency (PTE) of nine airports in the Beijing-Tianjin-Hebei region, China, and their evolution trends from 2008 to 2019. As the first step, taking the mileage of China's high-speed rail (HSR) as an external variable, a three-stage DEA was employed to obtain the adjusted airport's PTE after eliminating the impact of HSR. As the second step, a single-logarithmic OLS model was used to analyze the influence of the urban economic structure on deviations in airports' PTE before and after the adjustment, providing a clear and straightforward basis for formulating and testing policies. The essential findings included the following: (1) the development of HSR mainly inhibited the PTE of most airports due to their competition but also promoted PTE in a few airports for short periods due to their partnership; (2) various factors of the urban economic structure had different impacts on the adjusted airport's PTE and determined the trend over time.

Suggested Citation

  • Wei, Ming & Zhang, Shaopeng & Liu, Tao & Sun, Bo, 2023. "The adjusted passenger transportation efficiency of nine airports in China with consideration of the impact of high-speed rail network development: A two-step DEA-OLS method," Journal of Air Transport Management, Elsevier, vol. 109(C).
  • Handle: RePEc:eee:jaitra:v:109:y:2023:i:c:s0969699723000388
    DOI: 10.1016/j.jairtraman.2023.102395
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0969699723000388
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jairtraman.2023.102395?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Huynh, Triet Minh & Kim, Gyuseung & Ha, Hun-Koo, 2020. "Comparative analysis of efficiency for major Southeast Asia airports: A two-stage approach," Journal of Air Transport Management, Elsevier, vol. 89(C).
    2. Dobruszkes, Frédéric & Dehon, Catherine & Givoni, Moshe, 2014. "Does European high-speed rail affect the current level of air services? An EU-wide analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 69(C), pages 461-475.
    3. Wan, Yulai & Ha, Hun-Koo & Yoshida, Yuichiro & Zhang, Anming, 2016. "Airlines’ reaction to high-speed rail entries: Empirical study of the Northeast Asian market," Transportation Research Part A: Policy and Practice, Elsevier, vol. 94(C), pages 532-557.
    4. Güner, Samet & İbrahim Cebeci, Halil, 2021. "Multi-period efficiency analysis of major European and Asian airports under fixed proportion technologies," Transport Policy, Elsevier, vol. 107(C), pages 24-42.
    5. Zhensheng Chen & Xueli Chen & Xiaoqing Gan & Kaixuan Bai & Tomas Baležentis & Lixin Cui, 2020. "Technical Efficiency of Regional Public Hospitals in China Based on the Three-Stage DEA," IJERPH, MDPI, vol. 17(24), pages 1-17, December.
    6. Lin, L.C. & Hong, C.H., 2006. "Operational performance evaluation of international major airports: An application of data envelopment analysis," Journal of Air Transport Management, Elsevier, vol. 12(6), pages 342-351.
    7. Pacheco, R. R. & Fernandes, E., 2003. "Managerial efficiency of Brazilian airports," Transportation Research Part A: Policy and Practice, Elsevier, vol. 37(8), pages 667-680, October.
    8. Liu, Shuli & Wan, Yulai & Zhang, Anming, 2021. "Does high-speed rail development affect airport productivity? Evidence from China and Japan," Transport Policy, Elsevier, vol. 110(C), pages 1-15.
    9. Thanh Ngo & Kan Wai Hong Tsui, 2022. "Estimating the confidence intervals for DEA efficiency scores of Asia-Pacific airlines," Operational Research, Springer, vol. 22(4), pages 3411-3434, September.
    10. Lam, Shao Wei & Low, Joyce M.W. & Tang, Loon Ching, 2009. "Operational efficiencies across Asia Pacific airports," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 45(4), pages 654-665, July.
    11. Yu, Ming-Miin, 2004. "Measuring physical efficiency of domestic airports in Taiwan with undesirable outputs and environmental factors," Journal of Air Transport Management, Elsevier, vol. 10(5), pages 295-303.
    12. Yixiong He & Weiming Song & Fan Yang, 2021. "Research on the Supply Efficiency of Marine Ecological Products in the Yangtze River Delta Costal Urban Agglomerations Based on DEA-Tobit Model," Sustainability, MDPI, vol. 13(12), pages 1-17, June.
    13. Liu, Shuli & Wan, Yulai & Ha, Hun-Koo & Yoshida, Yuichiro & Zhang, Anming, 2019. "Impact of high-speed rail network development on airport traffic and traffic distribution: Evidence from China and Japan," Transportation Research Part A: Policy and Practice, Elsevier, vol. 127(C), pages 115-135.
    14. Chen, Xin & Xuan, Chao & Qiu, Rui, 2021. "Understanding spatial spillover effects of airports on economic development: New evidence from China’s hub airports," Transportation Research Part A: Policy and Practice, Elsevier, vol. 143(C), pages 48-60.
    15. Suzuki, Soushi & Nijkamp, Peter & Rietveld, Piet & Pels, Eric, 2010. "A distance friction minimization approach in data envelopment analysis: A comparative study on airport efficiency," European Journal of Operational Research, Elsevier, vol. 207(2), pages 1104-1115, December.
    16. Li, Hongchang & Strauss, Jack & Lu, Liu, 2019. "The impact of high-speed rail on civil aviation in China," Transport Policy, Elsevier, vol. 74(C), pages 187-200.
    17. Chen, Zhe & Jiang, Hai, 2020. "Impacts of high-speed rail on domestic air cargo traffic in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 142(C), pages 1-13.
    18. Fernandes, Elton & Pacheco, R. R., 2002. "Efficient use of airport capacity," Transportation Research Part A: Policy and Practice, Elsevier, vol. 36(3), pages 225-238, March.
    19. Chen, Zhenhua, 2017. "Impacts of high-speed rail on domestic air transportation in China," Journal of Transport Geography, Elsevier, vol. 62(C), pages 184-196.
    20. Park, Yonghwa & Ha, Hun-Koo, 2006. "Analysis of the impact of high-speed railroad service on air transport demand," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 42(2), pages 95-104, March.
    21. Zhang, Qiong & Yang, Hangjun & Wang, Qiang, 2017. "Impact of high-speed rail on China’s Big Three airlines," Transportation Research Part A: Policy and Practice, Elsevier, vol. 98(C), pages 77-85.
    22. Baltazar, Maria Emília & Silva, Jorge, 2020. "Spanish airports performance and efficiency benchmark. A PESA-AGB study," Journal of Air Transport Management, Elsevier, vol. 89(C).
    23. Pestana Barros, Carlos & Dieke, Peter U.C., 2007. "Performance evaluation of Italian airports: A data envelopment analysis," Journal of Air Transport Management, Elsevier, vol. 13(4), pages 184-191.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Anming & Wan, Yulai & Yang, Hangjun, 2019. "Impacts of high-speed rail on airlines, airports and regional economies: A survey of recent research," Transport Policy, Elsevier, vol. 81(C), pages 1-19.
    2. Chen, Zhe & Wang, Zhengli & Jiang, Hai, 2019. "Analyzing the heterogeneous impacts of high-speed rail entry on air travel in China: A hierarchical panel regression approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 127(C), pages 86-98.
    3. Edgar Ferreira Damacena & Peter Fernandes Wanke & Henrique Luiz Correa, 2016. "Infrastructure expansion in Brazilian airports: slack analysis using a distance friction minimization approach," DECISION: Official Journal of the Indian Institute of Management Calcutta, Springer;Indian Institute of Management Calcutta, vol. 43(2), pages 181-198, June.
    4. Wang, Wei & Sun, Huijun & Wu, Jianjun, 2020. "How does the decision of high-speed rail operator affect social welfare? Considering competition between high-speed rail and air transport," Transport Policy, Elsevier, vol. 88(C), pages 1-15.
    5. Wanke, Peter & Barros, C.P. & Nwaogbe, Obioma R., 2016. "Assessing productive efficiency in Nigerian airports using Fuzzy-DEA," Transport Policy, Elsevier, vol. 49(C), pages 9-19.
    6. Gu, Hongyi & Wan, Yulai, 2020. "Can entry of high-speed rail increase air traffic? Price competition, travel time difference and catchment expansion," Transport Policy, Elsevier, vol. 97(C), pages 55-72.
    7. Cifuentes-Faura, Javier & Faura-Martínez, Ursula, 2023. "Measuring Spanish airport performance: A bootstrap data envelopment analysis of efficiency," Utilities Policy, Elsevier, vol. 80(C).
    8. Wu, Shuping & Han, Dan, 2022. "Accessibility of high-speed rail (HSR) stations and HSR–air competition: Evidence from China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 166(C), pages 262-284.
    9. Wang, Jiaoe & Huang, Jie & Jing, Yue, 2020. "Competition between high-speed trains and air travel in China: From a spatial to spatiotemporal perspective," Transportation Research Part A: Policy and Practice, Elsevier, vol. 133(C), pages 62-78.
    10. Güner, Samet & İbrahim Cebeci, Halil, 2021. "Multi-period efficiency analysis of major European and Asian airports under fixed proportion technologies," Transport Policy, Elsevier, vol. 107(C), pages 24-42.
    11. Yang, Hangjun & Ma, Wenliang & Wang, Qiang & Wang, Kun & Zhang, Yahua, 2020. "Welfare implications for air passengers in China in the era of high-speed rail," Transport Policy, Elsevier, vol. 95(C), pages 1-13.
    12. Kan Tsui, Wai Hong & Balli, Hatice Ozer & Gilbey, Andrew & Gow, Hamish, 2014. "Operational efficiency of Asia–Pacific airports," Journal of Air Transport Management, Elsevier, vol. 40(C), pages 16-24.
    13. Sebastián Lozano & Ester Gutiérrez, 2011. "Efficiency Analysis and Target Setting of Spanish Airports," Networks and Spatial Economics, Springer, vol. 11(1), pages 139-157, March.
    14. Gu, Hongyi & Wan, Yulai, 2022. "Airline reactions to high-speed rail entry: Rail quality and market structure," Transportation Research Part A: Policy and Practice, Elsevier, vol. 165(C), pages 511-532.
    15. Liu, Shuli & Wan, Yulai & Ha, Hun-Koo & Yoshida, Yuichiro & Zhang, Anming, 2019. "Impact of high-speed rail network development on airport traffic and traffic distribution: Evidence from China and Japan," Transportation Research Part A: Policy and Practice, Elsevier, vol. 127(C), pages 115-135.
    16. Avogadro, Nicolò & Pels, Eric & Redondi, Renato, 2023. "Policy impacts on the propensity to travel by HSR in the Amsterdam – London market," Socio-Economic Planning Sciences, Elsevier, vol. 87(PB).
    17. Wang, Yixiao & Pels, Eric & Teunter, Ruud H. & Sun, Luoyi & Wu, Jianhong, 2023. "Railway liberalization, airport congestion toll, and infrastructure pricing: Modelling and numerical analysis for European and Chinese markets," Transportation Research Part A: Policy and Practice, Elsevier, vol. 170(C).
    18. Zhang, Rui & Johnson, Daniel & Zhao, Weiming & Nash, Chris, 2019. "Competition of airline and high-speed rail in terms of price and frequency: Empirical study from China," Transport Policy, Elsevier, vol. 78(C), pages 8-18.
    19. Tiziana DíAlfonso & Cinzia Daraio & Alberto Nastasi, 2013. "Assesing the Impact of Competition on the Efficiency of Italian Airports," DIAG Technical Reports 2013-01, Department of Computer, Control and Management Engineering, Universita' degli Studi di Roma "La Sapienza".
    20. Chao, Ching-Cheng & Yu, Po-Cheng, 2013. "Quantitative evaluation model of air cargo competitiveness and comparative analysis of major Asia-Pacific airports," Transport Policy, Elsevier, vol. 30(C), pages 318-326.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jaitra:v:109:y:2023:i:c:s0969699723000388. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/journal-of-air-transport-management/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.