IDEAS home Printed from https://ideas.repec.org/a/eee/intfor/v25y2009i3p467-483.html
   My bibliography  Save this article

How does improved forecasting benefit detection? An application to biosurveillance

Author

Listed:
  • Lotze, Thomas H.
  • Shmueli, Galit

Abstract

While many methods have been proposed for detecting disease outbreaks from pre-diagnostic data, their performance is usually not well understood. We argue that most existing temporal detection methods for biosurveillance can be characterized as a forecasting component coupled with a monitoring/detection component. In this paper, we describe the effect of forecast accuracy on detection performance. Quantifying this effect allows one to measure the benefits of improved forecasting and determine when it is worth improving a forecast method's precision at the cost of robustness or simplicity. We quantify the effect of forecast accuracy on detection metrics under different scenarios and investigate the effect when standard assumptions are violated. We illustrate our results by examining performance on authentic biosurveillance data.

Suggested Citation

  • Lotze, Thomas H. & Shmueli, Galit, 2009. "How does improved forecasting benefit detection? An application to biosurveillance," International Journal of Forecasting, Elsevier, vol. 25(3), pages 467-483, July.
  • Handle: RePEc:eee:intfor:v:25:y:2009:i:3:p:467-483
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0169-2070(08)00143-X
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chatfield, Chris & Yar, Mohammed, 1991. "Prediction intervals for multiplicative Holt-Winters," International Journal of Forecasting, Elsevier, vol. 7(1), pages 31-37, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. James W. Taylor & Derek W. Bunn, 1999. "A Quantile Regression Approach to Generating Prediction Intervals," Management Science, INFORMS, vol. 45(2), pages 225-237, February.
    2. Kim, Jae H. & Wong, Kevin & Athanasopoulos, George & Liu, Shen, 2011. "Beyond point forecasting: Evaluation of alternative prediction intervals for tourist arrivals," International Journal of Forecasting, Elsevier, vol. 27(3), pages 887-901.
    3. Hyndman, R.J. & Koehler, A.B. & Ord, J.K. & Snyder, R.D., 2001. "Prediction Intervals for Exponential Smoothing State Space Models," Monash Econometrics and Business Statistics Working Papers 11/01, Monash University, Department of Econometrics and Business Statistics.
    4. Jan G. De Gooijer & Rob J. Hyndman, 2005. "25 Years of IIF Time Series Forecasting: A Selective Review," Monash Econometrics and Business Statistics Working Papers 12/05, Monash University, Department of Econometrics and Business Statistics.
    5. Anne B. Koehler & Rob J. Hyndman & Ralph D. Snyder & J. Keith Ord, 2005. "Prediction intervals for exponential smoothing using two new classes of state space models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 24(1), pages 17-37.
    6. Weller, Barry R., 1995. "Software review," International Journal of Forecasting, Elsevier, vol. 11(1), pages 175-187, March.
    7. Katharina Hampel & Marcus Kunz & Norbert Schanne & Ruediger Wapler & Antje Weyh, 2006. "Regional Unemployment Forecasting Using Structural Component Models With Spatial Autocorrelation," ERSA conference papers ersa06p196, European Regional Science Association.
    8. Koehler, Anne B. & Snyder, Ralph D. & Ord, J. Keith, 2001. "Forecasting models and prediction intervals for the multiplicative Holt-Winters method," International Journal of Forecasting, Elsevier, vol. 17(2), pages 269-286.
    9. Hyndman, Rob J. & Khandakar, Yeasmin, 2008. "Automatic Time Series Forecasting: The forecast Package for R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 27(i03).
    10. Victor Guerrero & Edmundo Berumen, 1998. "Forecasting electricity consumption with extra-model information provided by consumers," Journal of Applied Statistics, Taylor & Francis Journals, vol. 25(2), pages 283-299.
    11. Chen, Chunhang, 1997. "Robustness properties of some forecasting methods for seasonal time series: A Monte Carlo study," International Journal of Forecasting, Elsevier, vol. 13(2), pages 269-280, June.
    12. repec:jss:jstsof:27:i03 is not listed on IDEAS
    13. Hyndman, Rob J. & Koehler, Anne B. & Snyder, Ralph D. & Grose, Simone, 2002. "A state space framework for automatic forecasting using exponential smoothing methods," International Journal of Forecasting, Elsevier, vol. 18(3), pages 439-454.
    14. J. Bermúdez & J. Segura & E. Vercher, 2008. "SIOPRED: a prediction and optimisation integrated system for demand," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 16(2), pages 258-271, December.
    15. Bianchi, Lisa & Jarrett, Jeffrey & Choudary Hanumara, R., 1998. "Improving forecasting for telemarketing centers by ARIMA modeling with intervention," International Journal of Forecasting, Elsevier, vol. 14(4), pages 497-504, December.
    16. Bermudez, J.D. & Segura, J.V. & Vercher, E., 2006. "A decision support system methodology for forecasting of time series based on soft computing," Computational Statistics & Data Analysis, Elsevier, vol. 51(1), pages 177-191, November.
    17. Mick Silver, 2006. "Core Inflation Measures and Statistical Issues in Choosing Among Them," IMF Working Papers 2006/097, International Monetary Fund.
    18. De Gooijer, Jan G. & Hyndman, Rob J., 2006. "25 years of time series forecasting," International Journal of Forecasting, Elsevier, vol. 22(3), pages 443-473.
    19. J D Bermúdez & J V Segura & E Vercher, 2010. "Bayesian forecasting with the Holt–Winters model," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(1), pages 164-171, January.
    20. Gardner, Everette Jr., 2006. "Exponential smoothing: The state of the art--Part II," International Journal of Forecasting, Elsevier, vol. 22(4), pages 637-666.
    21. Rachidi, Ntebatše R. & Nwaila, Glen T. & Zhang, Steven E. & Bourdeau, Julie E. & Ghorbani, Yousef, 2021. "Assessing cobalt supply sustainability through production forecasting and implications for green energy policies," Resources Policy, Elsevier, vol. 74(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:25:y:2009:i:3:p:467-483. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijforecast .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.