IDEAS home Printed from https://ideas.repec.org/a/eee/intfor/v19y2003i3p369-385.html
   My bibliography  Save this article

The predictability of asset returns: an approach combining technical analysis and time series forecasts

Author

Listed:
  • Fang, Yue
  • Xu, Daming

Abstract

No abstract is available for this item.

Suggested Citation

  • Fang, Yue & Xu, Daming, 2003. "The predictability of asset returns: an approach combining technical analysis and time series forecasts," International Journal of Forecasting, Elsevier, vol. 19(3), pages 369-385.
  • Handle: RePEc:eee:intfor:v:19:y:2003:i:3:p:369-385
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0169-2070(02)00013-4
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Scholes, Myron & Williams, Joseph, 1977. "Estimating betas from nonsynchronous data," Journal of Financial Economics, Elsevier, vol. 5(3), pages 309-327, December.
    2. Stoll, Hans R. & Whaley, Robert E., 1983. "Transaction costs and the small firm effect," Journal of Financial Economics, Elsevier, vol. 12(1), pages 57-79, June.
    3. Andrew W. Lo, A. Craig MacKinlay, 1988. "Stock Market Prices do not Follow Random Walks: Evidence from a Simple Specification Test," The Review of Financial Studies, Society for Financial Studies, vol. 1(1), pages 41-66.
    4. Hendrik Bessembinder & Kalok Chan, 1998. "Market Efficiency and the Returns to Technical Analysis," Financial Management, Financial Management Association, vol. 27(2), Summer.
    5. repec:bla:jfinan:v:55:y:2000:i:4:p:1705-1770 is not listed on IDEAS
    6. Andrew W. Lo & Harry Mamaysky & Jiang Wang, 2000. "Foundations of Technical Analysis: Computational Algorithms, Statistical Inference, and Empirical Implementation," Journal of Finance, American Finance Association, vol. 55(4), pages 1705-1765, August.
    7. Fama, Eugene F & French, Kenneth R, 1988. "Permanent and Temporary Components of Stock Prices," Journal of Political Economy, University of Chicago Press, vol. 96(2), pages 246-273, April.
    8. Foster, Dean P & Nelson, Daniel B, 1996. "Continuous Record Asymptotics for Rolling Sample Variance Estimators," Econometrica, Econometric Society, vol. 64(1), pages 139-174, January.
    9. Lo, Andrew W. & Craig MacKinlay, A., 1990. "An econometric analysis of nonsynchronous trading," Journal of Econometrics, Elsevier, vol. 45(1-2), pages 181-211.
    10. Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
    11. Zsuzsanna Fluck & Burton G. Malkiel & Richard E. Quandt, 1997. "The Predictability Of Stock Returns: A Cross-Sectional Simulation," The Review of Economics and Statistics, MIT Press, vol. 79(2), pages 176-183, May.
    12. Fama, Eugene F & MacBeth, James D, 1973. "Risk, Return, and Equilibrium: Empirical Tests," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 607-636, May-June.
    13. Bossaerts, Peter & Hillion, Pierre, 1999. "Implementing Statistical Criteria to Select Return Forecasting Models: What Do We Learn?," The Review of Financial Studies, Society for Financial Studies, vol. 12(2), pages 405-428.
    14. Chan, Louis K C & Jegadeesh, Narasimhan & Lakonishok, Josef, 1996. "Momentum Strategies," Journal of Finance, American Finance Association, vol. 51(5), pages 1681-1713, December.
    15. Poterba, James M. & Summers, Lawrence H., 1988. "Mean reversion in stock prices : Evidence and Implications," Journal of Financial Economics, Elsevier, vol. 22(1), pages 27-59, October.
    16. Brock, William & Lakonishok, Josef & LeBaron, Blake, 1992. "Simple Technical Trading Rules and the Stochastic Properties of Stock Returns," Journal of Finance, American Finance Association, vol. 47(5), pages 1731-1764, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. David McMillan & Alan Speight, 2006. "Non-linear long horizon returns predictability: evidence from six south-east Asian markets," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 13(2), pages 95-111, June.
    2. Adamantios Ntakaris & Juho Kanniainen & Moncef Gabbouj & Alexandros Iosifidis, 2019. "Mid-price Prediction Based on Machine Learning Methods with Technical and Quantitative Indicators," Papers 1907.09452, arXiv.org.
    3. Alexandros E. Milionis & Evangelia Papanagiotou, 2008. "A Note on the Use of Moving Average Trading Rules to Test For Weak from Efficiency in Capital Markets," Working Papers 91, Bank of Greece.
    4. Matthieu Garcin & Clément Goulet, 2017. "Non-parametric news impact curve: a variational approach," Post-Print halshs-01244292, HAL.
    5. Aatola, Piia & Ollikka, Kimmo & Ollikainen, Markku, 2012. "Informational Efficiency of the EU ETS market – a study of price predictability and profitable trading," Working Papers 28, VATT Institute for Economic Research.
    6. Wong, Wing-Keung & McAleer, Michael, 2009. "Mapping the Presidential Election Cycle in US stock markets," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(11), pages 3267-3277.
    7. Adamantios Ntakaris & Juho Kanniainen & Moncef Gabbouj & Alexandros Iosifidis, 2020. "Mid-price prediction based on machine learning methods with technical and quantitative indicators," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-39, June.
    8. Alexandros E. Milionis & Evangelia Papanagiotou, 2008. "On the Use of the Moving Average Trading Rule to Test for Weak Form Efficiency in Capital Markets," Economic Notes, Banca Monte dei Paschi di Siena SpA, vol. 37(2), pages 181-201, July.
    9. Matthieu Garcin & Clément Goulet, 2015. "A fully non-parametric heteroskedastic model," Documents de travail du Centre d'Economie de la Sorbonne 15086, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    10. Lin Liu & Qiguang Chen, 2020. "How to compare market efficiency? The Sharpe ratio based on the ARMA-GARCH forecast," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 6(1), pages 1-21, December.
    11. Elaine Y. L. Loh, 2007. "An alternative test for weak form efficiency based on technical analysis," Applied Financial Economics, Taylor & Francis Journals, vol. 17(12), pages 1003-1012.
    12. Matthieu Garcin & Clément Goulet, 2017. "Non-parametric news impact curve: a variational approach," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-01244292, HAL.
    13. Alexandros Milionis & Evangelia Papanagiotou, 2009. "A study of the predictive performance of the moving average trading rule as applied to NYSE, the Athens Stock Exchange and the Vienna Stock Exchange: sensitivity analysis and implications for weak-for," Applied Financial Economics, Taylor & Francis Journals, vol. 19(14), pages 1171-1186.
    14. Alexandros E. Milionis & Evangelia Papanagiotou, 2013. "Decomposing the predictive performance of the moving average trading rule of technical analysis: the contribution of linear and non-linear dependencies in stock returns," Journal of Applied Statistics, Taylor & Francis Journals, vol. 40(11), pages 2480-2494, November.
    15. Giuseppe Galloppo, 2009. "Dynamic Asset Allocation Using a Combined Criteria Decision System," Accounting & Taxation, The Institute for Business and Finance Research, vol. 1(1), pages 29-44.
    16. McMillan, David G., 2007. "Non-linear forecasting of stock returns: Does volume help?," International Journal of Forecasting, Elsevier, vol. 23(1), pages 115-126.
    17. Qing Zhou & Robert Faff, 2017. "The complementary role of cross-sectional and time-series information in forecasting stock returns," Australian Journal of Management, Australian School of Business, vol. 42(1), pages 113-139, February.
    18. Bartoš, Erik & Pinčák, Richard, 2017. "Identification of market trends with string and D2-brane maps," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 479(C), pages 57-70.
    19. Konstandinos Chourmouziadis & Dimitra K. Chourmouziadou & Prodromos D. Chatzoglou, 2021. "Embedding Four Medium-Term Technical Indicators to an Intelligent Stock Trading Fuzzy System for Predicting: A Portfolio Management Approach," Computational Economics, Springer;Society for Computational Economics, vol. 57(4), pages 1183-1216, April.
    20. Tabak, Benjamin M. & Lima, Eduardo J.A., 2009. "Market efficiency of Brazilian exchange rate: Evidence from variance ratio statistics and technical trading rules," European Journal of Operational Research, Elsevier, vol. 194(3), pages 814-820, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fernando Rubio, 2005. "Eficiencia De Mercado, Administracion De Carteras De Fondos Y Behavioural Finance," Finance 0503028, University Library of Munich, Germany, revised 23 Jul 2005.
    2. Cajueiro, Daniel O. & Tabak, Benjamin M., 2006. "Testing for predictability in equity returns for European transition markets," Economic Systems, Elsevier, vol. 30(1), pages 56-78, March.
    3. Sensoy, Ahmet & Tabak, Benjamin M., 2016. "Dynamic efficiency of stock markets and exchange rates," International Review of Financial Analysis, Elsevier, vol. 47(C), pages 353-371.
    4. Paul Handro & Bogdan Dima, 2024. "Analyzing Financial Markets Efficiency: Insights from a Bibliometric and Content Review," Journal of Financial Studies, Institute of Financial Studies, vol. 16(9), pages 119-175, May.
    5. Wen-Jun Xue & Li-Wen Zhang, 2016. "Stock Return Autocorrelations and Predictability in the Chinese Stock Market: Evidence from Threshold Quantile Autoregressive Models," Working Papers 1605, Florida International University, Department of Economics.
    6. Felix Schindler, 2014. "Persistence and Predictability in UK House Price Movements," The Journal of Real Estate Finance and Economics, Springer, vol. 48(1), pages 132-163, January.
    7. Yochanan Shachmurove & Uri BenZion & Paul Klein & Joseph Yagil, 2001. "A Moving Average Comparison of the Tel-Aviv 25 and S&P 500 Stock Indices," Penn CARESS Working Papers 4731f3394c43bebf4d3191c81, Penn Economics Department.
    8. Xue, Wen-Jun & Zhang, Li-Wen, 2017. "Stock return autocorrelations and predictability in the Chinese stock market—Evidence from threshold quantile autoregressive models," Economic Modelling, Elsevier, vol. 60(C), pages 391-401.
    9. Estrada, Javier, 2000. "The temporal dimension of risk," The Quarterly Review of Economics and Finance, Elsevier, vol. 40(2), pages 189-204.
    10. Estrada, Javier, 1997. "Random walks and the temporal dimension of risk," DEE - Working Papers. Business Economics. WB 7040, Universidad Carlos III de Madrid. Departamento de Economía de la Empresa.
    11. Giovanni Ferri & Doris Neuberger, 2014. "The Banking Regulatory Bubble and How to Get out of It," Rivista di Politica Economica, SIPI Spa, issue 2, pages 39-69, April-Jun.
    12. Stéphane Goutte & David Guerreiro & Bilel Sanhaji & Sophie Saglio & Julien Chevallier, 2019. "International Financial Markets," Post-Print halshs-02183053, HAL.
    13. Qing Zhou & Robert Faff, 2017. "The complementary role of cross-sectional and time-series information in forecasting stock returns," Australian Journal of Management, Australian School of Business, vol. 42(1), pages 113-139, February.
    14. Velimir Šonje & Denis Alajbeg & Zoran Bubas, 2011. "Efficient market hypothesis: is the Croatian stock market as (in)efficient as the U.S. market," Financial Theory and Practice, Institute of Public Finance, vol. 35(3), pages 301-326.
    15. Yehong Liu & Guosheng Yin, 2018. "Average Holding Price," Annals of Financial Economics (AFE), World Scientific Publishing Co. Pte. Ltd., vol. 13(01), pages 1-20, March.
    16. Tiwari, Aviral Kumar & Umar, Zaghum & Alqahtani, Faisal, 2021. "Existence of long memory in crude oil and petroleum products: Generalised Hurst exponent approach," Research in International Business and Finance, Elsevier, vol. 57(C).
    17. Kevin Rink, 2023. "The predictive ability of technical trading rules: an empirical analysis of developed and emerging equity markets," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 37(4), pages 403-456, December.
    18. Strobel, Marcus & Auer, Benjamin R., 2018. "Does the predictive power of variable moving average rules vanish over time and can we explain such tendencies?," International Review of Economics & Finance, Elsevier, vol. 53(C), pages 168-184.
    19. Lee, Suk Hun & Sung, Hyun Mo & Urrutia, Jorge L., 1996. "The behavior of secondary market prices of LDC syndicated loans," Journal of Banking & Finance, Elsevier, vol. 20(3), pages 537-554, April.
    20. Neely, Christopher J. & Weller, Paul, 2000. "Predictability in International Asset Returns: A Reexamination," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 35(4), pages 601-620, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:19:y:2003:i:3:p:369-385. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijforecast .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.