IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v90y2020icp1-6.html
   My bibliography  Save this article

The equivalence of two tax processes

Author

Listed:
  • Al Ghanim, Dalal
  • Loeffen, Ronnie
  • Watson, Alexander R.

Abstract

We introduce two models of taxation, the latent and natural tax processes, which have both been used to represent loss-carry-forward taxation on the capital of an insurance company. In the natural tax process, the tax rate is a function of the current level of capital, whereas in the latent tax process, the tax rate is a function of the capital that would have resulted if no tax had been paid. Whereas up to now these two types of tax processes have been treated separately, we show that, in fact, they are essentially equivalent. This allows a unified treatment, translating results from one model to the other. Significantly, we solve the question of existence and uniqueness for the natural tax process, which is defined via an integral equation. Our results clarify the existing literature on processes with tax.

Suggested Citation

  • Al Ghanim, Dalal & Loeffen, Ronnie & Watson, Alexander R., 2020. "The equivalence of two tax processes," Insurance: Mathematics and Economics, Elsevier, vol. 90(C), pages 1-6.
  • Handle: RePEc:eee:insuma:v:90:y:2020:i:c:p:1-6
    DOI: 10.1016/j.insmatheco.2019.10.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167668719303981
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.insmatheco.2019.10.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Wenyuan & Hu, Yijun, 2012. "Optimal loss-carry-forward taxation for the Lévy risk model," Insurance: Mathematics and Economics, Elsevier, vol. 50(1), pages 121-130.
    2. Renaud, Jean-François, 2009. "The distribution of tax payments in a Lévy insurance risk model with a surplus-dependent taxation structure," Insurance: Mathematics and Economics, Elsevier, vol. 45(2), pages 242-246, October.
    3. Hansjörg Albrecher & Florin Avram & Corina Constantinescu & Jevgenijs Ivanovs, 2014. "The Tax Identity For Markov Additive Risk Processes," Methodology and Computing in Applied Probability, Springer, vol. 16(1), pages 245-258, March.
    4. Eric C. K. Cheung & David Landriault, 2012. "On a Risk Model with Surplus-dependent Premium and Tax Rates," Methodology and Computing in Applied Probability, Springer, vol. 14(2), pages 233-251, June.
    5. Wei, Li, 2009. "Ruin probability in the presence of interest earnings and tax payments," Insurance: Mathematics and Economics, Elsevier, vol. 45(1), pages 133-138, August.
    6. Albrecher, Hansjörg & Borst, Sem & Boxma, Onno & Resing, Jacques, 2009. "The tax identity in risk theory -- a simple proof and an extension," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 304-306, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wenyuan Wang & Zhimin Zhang, 2019. "Optimal loss-carry-forward taxation for L\'{e}vy risk processes stopped at general draw-down time," Papers 1904.08029, arXiv.org.
    2. Wenyuan Wang & Xueyuan Wu & Cheng Chi, 2019. "Optimal implementation delay of taxation with trade-off for L\'{e}vy risk Processes," Papers 1910.08158, arXiv.org.
    3. Dalal Al Ghanim & Ronnie Loeffen & Alex Watson, 2018. "The equivalence of two tax processes," Papers 1811.01664, arXiv.org, revised Oct 2019.
    4. Eric C. K. Cheung & David Landriault, 2012. "On a Risk Model with Surplus-dependent Premium and Tax Rates," Methodology and Computing in Applied Probability, Springer, vol. 14(2), pages 233-251, June.
    5. Wenyuan Wang & Xiaowen Zhou, 2019. "Potential Densities for Taxed Spectrally Negative Lévy Risk Processes," Risks, MDPI, vol. 7(3), pages 1-11, August.
    6. Wang, Wenyuan & Hu, Yijun, 2012. "Optimal loss-carry-forward taxation for the Lévy risk model," Insurance: Mathematics and Economics, Elsevier, vol. 50(1), pages 121-130.
    7. Griffin, Philip S., 2020. "General tax structures for a Lévy insurance risk process under the Cramér condition," Stochastic Processes and their Applications, Elsevier, vol. 130(3), pages 1368-1387.
    8. Avram, Florin & Vu, Nhat Linh & Zhou, Xiaowen, 2017. "On taxed spectrally negative Lévy processes with draw-down stopping," Insurance: Mathematics and Economics, Elsevier, vol. 76(C), pages 69-74.
    9. Ming, Ruixing & Wang, Wenyuan & Hu, Yijun, 2017. "On maximizing expected discounted taxation in a risk process with interest," Statistics & Probability Letters, Elsevier, vol. 122(C), pages 128-140.
    10. Wenyuan Wang & Yuebao Wang & Ping Chen & Xueyuan Wu, 2022. "Dividend and Capital Injection Optimization with Transaction Cost for Lévy Risk Processes," Journal of Optimization Theory and Applications, Springer, vol. 194(3), pages 924-965, September.
    11. Florin Avram & Danijel Grahovac & Ceren Vardar-Acar, 2019. "The W , Z / ν , δ Paradigm for the First Passage of Strong Markov Processes without Positive Jumps," Risks, MDPI, vol. 7(1), pages 1-15, February.
    12. Cui, Zhenyu & Nguyen, Duy, 2016. "Omega diffusion risk model with surplus-dependent tax and capital injections," Insurance: Mathematics and Economics, Elsevier, vol. 68(C), pages 150-161.
    13. Zhenyu Cui, 2014. "Omega risk model with tax," Papers 1403.7680, arXiv.org.
    14. Ming, Rui-Xing & Wang, Wen-Yuan & Xiao, Li-Qun, 2010. "On the time value of absolute ruin with tax," Insurance: Mathematics and Economics, Elsevier, vol. 46(1), pages 67-84, February.
    15. Wei, Li, 2009. "Ruin probability in the presence of interest earnings and tax payments," Insurance: Mathematics and Economics, Elsevier, vol. 45(1), pages 133-138, August.
    16. Bohan Li & Junyi Guo, 2021. "Optimal Investment and Reinsurance Under the Gamma Process," Methodology and Computing in Applied Probability, Springer, vol. 23(3), pages 893-923, September.
    17. Landriault, David & Li, Bin & Li, Shu, 2015. "Analysis of a drawdown-based regime-switching Lévy insurance model," Insurance: Mathematics and Economics, Elsevier, vol. 60(C), pages 98-107.
    18. Albrecher, Hansjörg & Bäuerle, Nicole & Bladt, Martin, 2018. "Dividends: From refracting to ratcheting," Insurance: Mathematics and Economics, Elsevier, vol. 83(C), pages 47-58.
    19. Hansjörg Albrecher & Florin Avram & Corina Constantinescu & Jevgenijs Ivanovs, 2014. "The Tax Identity For Markov Additive Risk Processes," Methodology and Computing in Applied Probability, Springer, vol. 16(1), pages 245-258, March.
    20. Hansjoerg Albrecher & Jevgenijs Ivanovs, 2013. "Power identities for L\'evy risk models under taxation and capital injections," Papers 1310.3052, arXiv.org, revised Mar 2014.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:90:y:2020:i:c:p:1-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.