IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v46y2010i1p67-84.html
   My bibliography  Save this article

On the time value of absolute ruin with tax

Author

Listed:
  • Ming, Rui-Xing
  • Wang, Wen-Yuan
  • Xiao, Li-Qun

Abstract

Consider a compound Poisson surplus process of an insurer with debit interest and tax payments. When the portfolio is in a profitable situation, the insurer may pay a certain proportion of the premium income as tax payments. When the portfolio is below zero, the insurer could borrow money at a debit interest rate to continue his/her business. Meanwhile, the insurer will repay the debts from his/her premium income. The negative surplus may return to a positive level except that the surplus is below a certain critical level. In the latter case, we say that absolute ruin occurs. In this paper, we discuss absolute ruin quantities by defining an expected discounted penalty function at absolute ruin. First, a system of integro-differential equations satisfied by the expected discounted penalty function is derived. Second, closed-form expressions for the expected discounted total sum of tax payments until absolute ruin and the Laplace-Stieltjes transform (LST) of the total duration of negative surplus are obtained. Third, for exponential individual claims, closed-form expressions for the absolute ruin probability, the LST of the time to absolute ruin, the distribution function of the deficit at absolute ruin and the expected accumulated discounted tax are given. Fourth, for general individual claim distributions, when the initial surplus goes to infinity, we show that the ratio of the absolute ruin probability with tax to that without tax goes to a positive constant which is greater than one. Finally, we investigate the asymptotic behavior of the absolute ruin probability of a modified risk model where the interest rate on a positive surplus is involved.

Suggested Citation

  • Ming, Rui-Xing & Wang, Wen-Yuan & Xiao, Li-Qun, 2010. "On the time value of absolute ruin with tax," Insurance: Mathematics and Economics, Elsevier, vol. 46(1), pages 67-84, February.
  • Handle: RePEc:eee:insuma:v:46:y:2010:i:1:p:67-84
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-6687(09)00121-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hans Gerber & Elias Shiu, 1998. "On the Time Value of Ruin," North American Actuarial Journal, Taylor & Francis Journals, vol. 2(1), pages 48-72.
    2. Embrechts, P. & Villasenor, J. A., 1988. "Ruin estimates for large claims," Insurance: Mathematics and Economics, Elsevier, vol. 7(4), pages 269-274, December.
    3. Wei, Li, 2009. "Ruin probability in the presence of interest earnings and tax payments," Insurance: Mathematics and Economics, Elsevier, vol. 45(1), pages 133-138, August.
    4. He, Jingmin & Wu, Rong & Zhang, Huayue, 2009. "Total duration of negative surplus for the risk model with debit interest," Statistics & Probability Letters, Elsevier, vol. 79(10), pages 1320-1326, May.
    5. Dickson, David C. M. & Egidio dos Reis, Alfredo D., 1997. "The effect of interest on negative surplus," Insurance: Mathematics and Economics, Elsevier, vol. 21(1), pages 1-16, October.
    6. Gerber, Hans U. & Shiu, Elias S. W., 1997. "The joint distribution of the time of ruin, the surplus immediately before ruin, and the deficit at ruin," Insurance: Mathematics and Economics, Elsevier, vol. 21(2), pages 129-137, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yue He & Reiichiro Kawai & Yasutaka Shimizu & Kazutoshi Yamazaki, 2022. "The Gerber-Shiu discounted penalty function: A review from practical perspectives," Papers 2203.10680, arXiv.org, revised Dec 2022.
    2. He, Yue & Kawai, Reiichiro & Shimizu, Yasutaka & Yamazaki, Kazutoshi, 2023. "The Gerber-Shiu discounted penalty function: A review from practical perspectives," Insurance: Mathematics and Economics, Elsevier, vol. 109(C), pages 1-28.
    3. Eric C. K. Cheung & David Landriault, 2012. "On a Risk Model with Surplus-dependent Premium and Tax Rates," Methodology and Computing in Applied Probability, Springer, vol. 14(2), pages 233-251, June.
    4. Wenyuan Wang & Zhimin Zhang, 2019. "Optimal loss-carry-forward taxation for L\'{e}vy risk processes stopped at general draw-down time," Papers 1904.08029, arXiv.org.
    5. Wenyuan Wang & Xueyuan Wu & Cheng Chi, 2019. "Optimal implementation delay of taxation with trade-off for L\'{e}vy risk Processes," Papers 1910.08158, arXiv.org.
    6. Wang, Wenyuan & Hu, Yijun, 2012. "Optimal loss-carry-forward taxation for the Lévy risk model," Insurance: Mathematics and Economics, Elsevier, vol. 50(1), pages 121-130.
    7. Ming, Ruixing & Wang, Wenyuan & Hu, Yijun, 2017. "On maximizing expected discounted taxation in a risk process with interest," Statistics & Probability Letters, Elsevier, vol. 122(C), pages 128-140.
    8. Wang, Wenyuan & Ming, Ruixing, 2018. "Two-side exit problems for taxed Lévy risk process involving the general draw-down time," Statistics & Probability Letters, Elsevier, vol. 138(C), pages 66-74.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Min Song & Rong Wu & Xin Zhang, 2008. "Total duration of negative surplus for the dual model," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 24(6), pages 591-600, November.
    2. Wu, Rong & Wang, Guojing & Zhang, Chunsheng, 2005. "On a joint distribution for the risk process with constant interest force," Insurance: Mathematics and Economics, Elsevier, vol. 36(3), pages 365-374, June.
    3. Psarrakos, Georgios & Politis, Konstadinos, 2008. "Tail bounds for the joint distribution of the surplus prior to and at ruin," Insurance: Mathematics and Economics, Elsevier, vol. 42(1), pages 163-176, February.
    4. Albrecher, Hansjörg & Constantinescu, Corina & Pirsic, Gottlieb & Regensburger, Georg & Rosenkranz, Markus, 2010. "An algebraic operator approach to the analysis of Gerber-Shiu functions," Insurance: Mathematics and Economics, Elsevier, vol. 46(1), pages 42-51, February.
    5. Dassios, Angelos & Wu, Shanle, 2008. "Parisian ruin with exponential claims," LSE Research Online Documents on Economics 32033, London School of Economics and Political Science, LSE Library.
    6. Li, Shuanming & Garrido, José, 2002. "On the time value of ruin in the discrete time risk model," DEE - Working Papers. Business Economics. WB wb021812, Universidad Carlos III de Madrid. Departamento de Economía de la Empresa.
    7. Lin, X. Sheldon & Willmot, Gordon E., 2000. "The moments of the time of ruin, the surplus before ruin, and the deficit at ruin," Insurance: Mathematics and Economics, Elsevier, vol. 27(1), pages 19-44, August.
    8. He, Jingmin & Wu, Rong & Zhang, Huayue, 2009. "Total duration of negative surplus for the risk model with debit interest," Statistics & Probability Letters, Elsevier, vol. 79(10), pages 1320-1326, May.
    9. Chiu, S. N. & Yin, C. C., 2003. "The time of ruin, the surplus prior to ruin and the deficit at ruin for the classical risk process perturbed by diffusion," Insurance: Mathematics and Economics, Elsevier, vol. 33(1), pages 59-66, August.
    10. Cheung, Eric C.K. & Landriault, David, 2010. "A generalized penalty function with the maximum surplus prior to ruin in a MAP risk model," Insurance: Mathematics and Economics, Elsevier, vol. 46(1), pages 127-134, February.
    11. Ambagaspitiya, Rohana S., 2009. "Ultimate ruin probability in the Sparre Andersen model with dependent claim sizes and claim occurrence times," Insurance: Mathematics and Economics, Elsevier, vol. 44(3), pages 464-472, June.
    12. Cheung, Eric C.K. & Landriault, David & Willmot, Gordon E. & Woo, Jae-Kyung, 2010. "Structural properties of Gerber-Shiu functions in dependent Sparre Andersen models," Insurance: Mathematics and Economics, Elsevier, vol. 46(1), pages 117-126, February.
    13. Gerber, Hans U. & Landry, Bruno, 1998. "On the discounted penalty at ruin in a jump-diffusion and the perpetual put option," Insurance: Mathematics and Economics, Elsevier, vol. 22(3), pages 263-276, July.
    14. Yang, Hailiang, 2003. "Ruin theory in a financial corporation model with credit risk," Insurance: Mathematics and Economics, Elsevier, vol. 33(1), pages 135-145, August.
    15. Claude Lefèvre & Philippe Picard, 2013. "Ruin Time and Severity for a Lévy Subordinator Claim Process: A Simple Approach," Risks, MDPI, vol. 1(3), pages 1-21, December.
    16. He, Yue & Kawai, Reiichiro & Shimizu, Yasutaka & Yamazaki, Kazutoshi, 2023. "The Gerber-Shiu discounted penalty function: A review from practical perspectives," Insurance: Mathematics and Economics, Elsevier, vol. 109(C), pages 1-28.
    17. Liu, Peng & Zhang, Chunsheng & Ji, Lanpeng, 2017. "A note on ruin problems in perturbed classical risk models," Statistics & Probability Letters, Elsevier, vol. 120(C), pages 28-33.
    18. Biffis, Enrico & Morales, Manuel, 2010. "On a generalization of the Gerber-Shiu function to path-dependent penalties," Insurance: Mathematics and Economics, Elsevier, vol. 46(1), pages 92-97, February.
    19. Woo, Jae-Kyung, 2011. "Refinements of two-sided bounds for renewal equations," Insurance: Mathematics and Economics, Elsevier, vol. 48(2), pages 189-196, March.
    20. Eric C. K. Cheung & David Landriault, 2012. "On a Risk Model with Surplus-dependent Premium and Tax Rates," Methodology and Computing in Applied Probability, Springer, vol. 14(2), pages 233-251, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:46:y:2010:i:1:p:67-84. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.