IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v71y2016icp93-102.html
   My bibliography  Save this article

Issues with the Smith–Wilson method

Author

Listed:
  • Lagerås, Andreas
  • Lindholm, Mathias

Abstract

We analyse various features of the Smith–Wilson method used for discounting under the EU regulation Solvency II, with special attention to hedging. In particular, we show that all key rate duration hedges of liabilities beyond the Last Liquid Point will be peculiar. Moreover, we show that there is a connection between the occurrence of negative discount factors and singularities in the convergence criterion used to calibrate the model. The main tool used for analysing hedges is a novel stochastic representation of the Smith–Wilson method.

Suggested Citation

  • Lagerås, Andreas & Lindholm, Mathias, 2016. "Issues with the Smith–Wilson method," Insurance: Mathematics and Economics, Elsevier, vol. 71(C), pages 93-102.
  • Handle: RePEc:eee:insuma:v:71:y:2016:i:c:p:93-102
    DOI: 10.1016/j.insmatheco.2016.08.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167668716300580
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.insmatheco.2016.08.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Patrick Hagan & Graeme West, 2006. "Interpolation Methods for Curve Construction," Applied Mathematical Finance, Taylor & Francis Journals, vol. 13(2), pages 89-129.
    2. de Kort, J. & Vellekoop, M.H., 2016. "Term structure extrapolation and asymptotic forward rates," Insurance: Mathematics and Economics, Elsevier, vol. 67(C), pages 107-119.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhao, Chaoyi & Jia, Zijian & Wu, Lan, 2024. "Construct Smith-Wilson risk-free interest rate curves with endogenous and positive ultimate forward rates," Insurance: Mathematics and Economics, Elsevier, vol. 114(C), pages 156-175.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Chaoyi & Jia, Zijian & Wu, Lan, 2024. "Construct Smith-Wilson risk-free interest rate curves with endogenous and positive ultimate forward rates," Insurance: Mathematics and Economics, Elsevier, vol. 114(C), pages 156-175.
    2. Blomvall, Jörgen & Hagenbjörk, Johan, 2022. "Reducing transaction costs for interest rate risk hedging with stochastic programming," European Journal of Operational Research, Elsevier, vol. 302(3), pages 1282-1293.
    3. Caldana, Ruggero & Fusai, Gianluca & Roncoroni, Andrea, 2017. "Electricity forward curves with thin granularity: Theory and empirical evidence in the hourly EPEXspot market," European Journal of Operational Research, Elsevier, vol. 261(2), pages 715-734.
    4. Masaaki Fujii & Akihiko Takahashi, 2010. "Modeling of Interest Rate Term Structures under Collateralization and its Implications," CIRJE F-Series CIRJE-F-762, CIRJE, Faculty of Economics, University of Tokyo.
    5. Baruník, Jozef & Malinská, Barbora, 2016. "Forecasting the term structure of crude oil futures prices with neural networks," Applied Energy, Elsevier, vol. 164(C), pages 366-379.
    6. Damir Filipovi'c & Sander Willems, 2016. "Exact Smooth Term-Structure Estimation," Papers 1606.03899, arXiv.org, revised Aug 2018.
    7. Chiara Sabelli & Michele Pioppi & Luca Sitzia & Giacomo Bormetti, 2014. "Multi-curve HJM modelling for risk management," Papers 1411.3977, arXiv.org, revised Oct 2015.
    8. Blomvall, Jörgen, 2017. "Measurement of interest rates using a convex optimization model," European Journal of Operational Research, Elsevier, vol. 256(1), pages 308-316.
    9. Gan Guojun & Valdez Emiliano A., 2017. "Valuation of large variable annuity portfolios: Monte Carlo simulation and synthetic datasets," Dependence Modeling, De Gruyter, vol. 5(1), pages 354-374, December.
    10. Fengler, Matthias R. & Hin, Lin-Yee, 2015. "A simple and general approach to fitting the discount curve under no-arbitrage constraints," Finance Research Letters, Elsevier, vol. 15(C), pages 78-84.
    11. Bianchetti, Marco, 2008. "Two Curves, One Price :Pricing & Hedging Interest Rate Derivatives Decoupling Forwarding and Discounting Yield Curves," MPRA Paper 22022, University Library of Munich, Germany, revised 24 Jan 2010.
    12. Blomvall, Jörgen & Hagenbjörk, Johan, 2019. "A generic framework for monetary performance attribution," Journal of Banking & Finance, Elsevier, vol. 105(C), pages 121-133.
    13. Marcin Dec, 2019. "Markovian and multi-curve friendly parametrisation of a HJM model used in valuation adjustment of interest rate derivatives," Bank i Kredyt, Narodowy Bank Polski, vol. 50(2), pages 107-148.
    14. Vadim Kaushanskiy & Victor Lapshin, 2016. "A nonparametric method for term structure fitting with automatic smoothing," Applied Economics, Taylor & Francis Journals, vol. 48(58), pages 5654-5666, December.
    15. Borak, Szymon & Weron, Rafal, 2008. "A semiparametric factor model for electricity forward curve dynamics," MPRA Paper 10421, University Library of Munich, Germany.
    16. Lim, Kyuseong & Kim, Min Jae & Kim, Sehyun & Kim, Soo Yong, 2014. "Statistical properties of the stock and credit market: RMT and network topology," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 407(C), pages 66-75.
    17. Rüdiger Kiesel & Florentina Paraschiv & Audun Sætherø, 2019. "On the construction of hourly price forward curves for electricity prices," Computational Management Science, Springer, vol. 16(1), pages 345-369, February.
    18. Johan Hagenbjörk & Jörgen Blomvall, 2019. "Simulation and evaluation of the distribution of interest rate risk," Computational Management Science, Springer, vol. 16(1), pages 297-327, February.
    19. Jørgensen, Peter Løchte, 2018. "An analysis of the Solvency II regulatory framework’s Smith-Wilson model for the term structure of risk-free interest rates," Journal of Banking & Finance, Elsevier, vol. 97(C), pages 219-237.
    20. Erdemlioglu, Deniz, 2009. "Macro Factors in UK Excess Bond Returns: Principal Components and Factor-Model Approach," MPRA Paper 28895, University Library of Munich, Germany.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:71:y:2016:i:c:p:93-102. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.