IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v69y2016icp149-155.html
   My bibliography  Save this article

An optimal co-reinsurance strategy

Author

Listed:
  • Payandeh Najafabadi, Amir T.
  • Bazaz, Ali Panahi

Abstract

This article considers a co-reinsurance strategy that (1) protects insurance companies against catastrophic risks; (2) enables insurers to gather sufficient information about the different risk attitudes of reinsurers and diversify their reinsured risks; (3) enables insurers to create better risk-sharing profiles by balancing the risk tolerances of reinsurers; (4) has the benefit of allowing reinsurers to accumulate experience with risks with which they are unfamiliar; (5) reduces the overall direct cost of a reinsurance contract; (6) allows a government to back some insurance products, such as the terrorism insurance programs that were established in many countries after the September 11th terrorist attacks; and (7) reflects the practical reinsurance industry of some countries, such as Iran. Such a co-reinsurance strategy can be fully determined by estimating its parameters whenever three optimal criteria are satisfied and prior information about the unknown parameters is available. Two simulation-based studies have been conducted to demonstrate (1) the practical applications of our findings and (2) the possible impact of any type of dependency between the co-reinsurance’s parameters and the evaluated optimal co-reinsurance strategy.

Suggested Citation

  • Payandeh Najafabadi, Amir T. & Bazaz, Ali Panahi, 2016. "An optimal co-reinsurance strategy," Insurance: Mathematics and Economics, Elsevier, vol. 69(C), pages 149-155.
  • Handle: RePEc:eee:insuma:v:69:y:2016:i:c:p:149-155
    DOI: 10.1016/j.insmatheco.2016.04.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S016766871530158X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.insmatheco.2016.04.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Göran Skogh & Hong Wu, 2005. "The Diversification Theorem Restated: Risk-pooling Without Assignment of Probabilities," Journal of Risk and Uncertainty, Springer, vol. 31(1), pages 35-51, July.
    2. Hesselager, Ole & Witting, Thomas, 1988. "A Credibility Model with Random Fluctuations in Delay Probabilities for the Prediction of IBNR Claims(*)," ASTIN Bulletin, Cambridge University Press, vol. 18(1), pages 79-90, April.
    3. Hossack,I. B. & Pollard,J. H. & Zehnwirth,B., 1999. "Introductory Statistics with Applications in General Insurance," Cambridge Books, Cambridge University Press, number 9780521655347, January.
    4. Asimit, Alexandru V. & Badescu, Alexandru M. & Verdonck, Tim, 2013. "Optimal risk transfer under quantile-based risk measurers," Insurance: Mathematics and Economics, Elsevier, vol. 53(1), pages 252-265.
    5. Payandeh Najafabadi, Amir T. & Hatami, Hamid & Omidi Najafabadi, Maryam, 2012. "A maximum-entropy approach to the linear credibility formula," Insurance: Mathematics and Economics, Elsevier, vol. 51(1), pages 216-221.
    6. Payandeh Najafabadi, Amir T., 2010. "A new approach to the credibility formula," Insurance: Mathematics and Economics, Elsevier, vol. 46(2), pages 334-338, April.
    7. Giuliano Castellano, 2010. "Governing Ignorance: Emerging catastrophic Risks-Industry Responses and Policy Frictions," Post-Print hal-00541418, HAL.
    8. England, P.D. & Verrall, R.J., 2002. "Stochastic Claims Reserving in General Insurance," British Actuarial Journal, Cambridge University Press, vol. 8(3), pages 443-518, August.
    9. Coutts, S.M. & Thomas, T.R.H., 1997. "Modelling the Impact of Reinsurance on Financial Strength," British Actuarial Journal, Cambridge University Press, vol. 3(3), pages 583-653, August.
    10. Tan, Ken Seng & Weng, Chengguo & Zhang, Yi, 2011. "Optimality of general reinsurance contracts under CTE risk measure," Insurance: Mathematics and Economics, Elsevier, vol. 49(2), pages 175-187, September.
    11. Froot, Kenneth A. & Stein, Jeremy C., 1998. "Risk management, capital budgeting, and capital structure policy for financial institutions: an integrated approach," Journal of Financial Economics, Elsevier, vol. 47(1), pages 55-82, January.
    12. Cai, Jun & Tan, Ken Seng, 2007. "Optimal Retention for a Stop-loss Reinsurance Under the VaR and CTE Risk Measures," ASTIN Bulletin, Cambridge University Press, vol. 37(1), pages 93-112, May.
    13. Udi Makov, 2001. "Principal Applications of Bayesian Methods in Actuarial Science," North American Actuarial Journal, Taylor & Francis Journals, vol. 5(4), pages 53-57.
    14. Hossack,I. B. & Pollard,J. H. & Zehnwirth,B., 1999. "Introductory Statistics with Applications in General Insurance," Cambridge Books, Cambridge University Press, number 9780521652346, January.
    15. Erwann Michel-Kerjan & Burkhard Pedell, 2005. "Terrorism Risk Coverage in the Post-9/11 Era: A Comparison of New Public–Private Partnerships in France, Germany and the U.S.*," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 30(1), pages 144-170, January.
    16. Boone, J. & van Damme, E.E.C. & De Waegenaere, A.M.B., 2012. "Co-Assurantie vanuit Speltheoretisch Perspectief," Other publications TiSEM 2fefba2d-d046-4cdc-aeda-a, Tilburg University, School of Economics and Management.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Najafabadi, Amir T. Payandeh & Bazaz, Ali Panahi, 2018. "An optimal multi-layer reinsurance policy under conditional tail expectation," Annals of Actuarial Science, Cambridge University Press, vol. 12(1), pages 130-146, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Najafabadi, Amir T. Payandeh & Bazaz, Ali Panahi, 2018. "An optimal multi-layer reinsurance policy under conditional tail expectation," Annals of Actuarial Science, Cambridge University Press, vol. 12(1), pages 130-146, March.
    2. Cheung, Ka Chun & He, Wanting & Wang, He, 2023. "Multi-constrained optimal reinsurance model from the duality perspectives," Insurance: Mathematics and Economics, Elsevier, vol. 113(C), pages 199-214.
    3. Liyuan Lin & Fangda Liu & Jingzhen Liu abd Luyang Yu, 2023. "The optimal reinsurance strategy with price-competition between two reinsurers," Papers 2305.00509, arXiv.org.
    4. Sun, Haoze & Weng, Chengguo & Zhang, Yi, 2017. "Optimal multivariate quota-share reinsurance: A nonparametric mean-CVaR framework," Insurance: Mathematics and Economics, Elsevier, vol. 72(C), pages 197-214.
    5. Cheung, K.C. & Chong, W.F. & Yam, S.C.P., 2015. "Convex ordering for insurance preferences," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 409-416.
    6. Asimit, Alexandru V. & Bignozzi, Valeria & Cheung, Ka Chun & Hu, Junlei & Kim, Eun-Seok, 2017. "Robust and Pareto optimality of insurance contracts," European Journal of Operational Research, Elsevier, vol. 262(2), pages 720-732.
    7. Lu, ZhiYi & Liu, LePing & Meng, ShengWang, 2013. "Optimal reinsurance with concave ceded loss functions under VaR and CTE risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 52(1), pages 46-51.
    8. Berry-Stölzle, Thomas R. & Irlbeck, Steven, 2021. "Religiosity and risk taking: Is there a demand-side effect?," Journal of Corporate Finance, Elsevier, vol. 71(C).
    9. Lu, ZhiYi & Meng, LiLi & Wang, Yujin & Shen, Qingjie, 2016. "Optimal reinsurance under VaR and TVaR risk measures in the presence of reinsurer’s risk limit," Insurance: Mathematics and Economics, Elsevier, vol. 68(C), pages 92-100.
    10. Cui, Wei & Yang, Jingping & Wu, Lan, 2013. "Optimal reinsurance minimizing the distortion risk measure under general reinsurance premium principles," Insurance: Mathematics and Economics, Elsevier, vol. 53(1), pages 74-85.
    11. El Attar Abderrahim & El Hachloufi Mostafa & Guennoun Zine El Abidine, 2017. "An Inclusive Criterion For An Optimal Choice Of Reinsurance," Annals of Financial Economics (AFE), World Scientific Publishing Co. Pte. Ltd., vol. 12(04), pages 1-22, December.
    12. Yanwei Zhang & Vanja Dukic, 2013. "Predicting Multivariate Insurance Loss Payments Under the Bayesian Copula Framework," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 80(4), pages 891-919, December.
    13. Mi Chen & Wenyuan Wang & Ruixing Ming, 2016. "Optimal Reinsurance Under General Law-Invariant Convex Risk Measure and TVaR Premium Principle," Risks, MDPI, vol. 4(4), pages 1-12, December.
    14. Alejandro Balbas & Beatriz Balbas & Raquel Balbas, 2013. "Optimal Reinsurance: A Risk Sharing Approach," Risks, MDPI, vol. 1(2), pages 1-12, August.
    15. Reichel, Lukas & Schmeiser, Hato & Schreiber, Florian, 2022. "On the optimal management of counterparty risk in reinsurance contracts," Journal of Economic Behavior & Organization, Elsevier, vol. 201(C), pages 374-394.
    16. Guerra, Manuel & Centeno, M.L., 2012. "Are quantile risk measures suitable for risk-transfer decisions?," Insurance: Mathematics and Economics, Elsevier, vol. 50(3), pages 446-461.
    17. Jianfa Cong & Ken Tan, 2016. "Optimal VaR-based risk management with reinsurance," Annals of Operations Research, Springer, vol. 237(1), pages 177-202, February.
    18. Chi, Yichun & Liu, Fangda, 2017. "Optimal insurance design in the presence of exclusion clauses," Insurance: Mathematics and Economics, Elsevier, vol. 76(C), pages 185-195.
    19. Hu, Xiang & Yang, Hailiang & Zhang, Lianzeng, 2015. "Optimal retention for a stop-loss reinsurance with incomplete information," Insurance: Mathematics and Economics, Elsevier, vol. 65(C), pages 15-21.
    20. Zhang, Huiming & Liu, Yunxiao & Li, Bo, 2014. "Notes on discrete compound Poisson model with applications to risk theory," Insurance: Mathematics and Economics, Elsevier, vol. 59(C), pages 325-336.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:69:y:2016:i:c:p:149-155. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.