IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v58y2014icp217-222.html
   My bibliography  Save this article

Optimal portfolio choice for an insurer with loss aversion

Author

Listed:
  • Guo, Wenjing

Abstract

The problem of optimal investment for an insurance company attracts more attention in recent years. In general, the investment decision maker of the insurance company is assumed to be rational and risk averse. This is inconsistent with non fully rational decision-making way in the real world. In this paper we investigate an optimal portfolio selection problem for the insurer. The investment decision maker is assumed to be loss averse. The surplus process of the insurer is modeled by a Lévy process. The insurer aims to maximize the expected utility when terminal wealth exceeds his aspiration level. With the help of martingale method, we translate the dynamic maximization problem into an equivalent static optimization problem. By solving the static optimization problem, we derive explicit expressions of the optimal portfolio and the optimal wealth process.

Suggested Citation

  • Guo, Wenjing, 2014. "Optimal portfolio choice for an insurer with loss aversion," Insurance: Mathematics and Economics, Elsevier, vol. 58(C), pages 217-222.
  • Handle: RePEc:eee:insuma:v:58:y:2014:i:c:p:217-222
    DOI: 10.1016/j.insmatheco.2014.07.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167668714000900
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.insmatheco.2014.07.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tversky, Amos & Kahneman, Daniel, 1992. "Advances in Prospect Theory: Cumulative Representation of Uncertainty," Journal of Risk and Uncertainty, Springer, vol. 5(4), pages 297-323, October.
    2. Jun Cai & Chengming Xu, 2006. "On The Decomposition Of The Ruin Probability For A Jump-Diffusion Surplus Process Compounded By A Geometric Brownian Motion," North American Actuarial Journal, Taylor & Francis Journals, vol. 10(2), pages 120-129.
    3. Arjan B. Berkelaar & Roy Kouwenberg & Thierry Post, 2004. "Optimal Portfolio Choice under Loss Aversion," The Review of Economics and Statistics, MIT Press, vol. 86(4), pages 973-987, November.
    4. Hanqing Jin & Zuo Quan Xu & Xun Yu Zhou, 2008. "A Convex Stochastic Optimization Problem Arising From Portfolio Selection," Mathematical Finance, Wiley Blackwell, vol. 18(1), pages 171-183, January.
    5. Sid Browne, 1995. "Optimal Investment Policies for a Firm With a Random Risk Process: Exponential Utility and Minimizing the Probability of Ruin," Mathematics of Operations Research, INFORMS, vol. 20(4), pages 937-958, November.
    6. Hipp, Christian & Plum, Michael, 2000. "Optimal investment for insurers," Insurance: Mathematics and Economics, Elsevier, vol. 27(2), pages 215-228, October.
    7. Shefrin, Hersh & Statman, Meir, 2000. "Behavioral Portfolio Theory," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 35(2), pages 127-151, June.
    8. Shlomo Benartzi & Richard H. Thaler, 1995. "Myopic Loss Aversion and the Equity Premium Puzzle," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 110(1), pages 73-92.
    9. Browne, S., 1995. "Optimal Investment Policies for a Firm with a Random Risk Process: Exponential Utility and Minimizing the Probability of Ruin," Papers 95-08, Columbia - Graduate School of Business.
    10. Chi Liu & Hailiang Yang, 2004. "Optimal Investment for an Insurer to Minimize Its Probability of Ruin," North American Actuarial Journal, Taylor & Francis Journals, vol. 8(2), pages 11-31.
    11. Yang, Hailiang & Zhang, Lihong, 2005. "Optimal investment for insurer with jump-diffusion risk process," Insurance: Mathematics and Economics, Elsevier, vol. 37(3), pages 615-634, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Song, Jingjing & Bi, Xiuchun & Li, Rong & Zhang, Shuguang, 2017. "Optimal consumption and portfolio selection problems under loss aversion with downside consumption constraints," Applied Mathematics and Computation, Elsevier, vol. 299(C), pages 80-94.
    2. Martin Eling & Ruo Jia, 2017. "Recent Research Developments Affecting Nonlife Insurance—The CAS Risk Premium Project 2014 Update," Risk Management and Insurance Review, American Risk and Insurance Association, vol. 20(1), pages 63-77, March.
    3. Jost, Peter-J., 2016. "Competitive insurance pricing with complete information, loss-averse utility and finitely many policies," Insurance: Mathematics and Economics, Elsevier, vol. 66(C), pages 11-21.
    4. Jia Yue & Ming-Hui Wang & Nan-Jing Huang, 2022. "Global Optimal Consumption–Portfolio Rules with Myopic Preferences and Loss Aversion," Computational Economics, Springer;Society for Computational Economics, vol. 60(4), pages 1427-1455, December.
    5. Chen, Zheng & Li, Zhongfei & Zeng, Yan & Sun, Jingyun, 2017. "Asset allocation under loss aversion and minimum performance constraint in a DC pension plan with inflation risk," Insurance: Mathematics and Economics, Elsevier, vol. 75(C), pages 137-150.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Zengwu & Xia, Jianming & Zhang, Lihong, 2007. "Optimal investment for an insurer: The martingale approach," Insurance: Mathematics and Economics, Elsevier, vol. 40(2), pages 322-334, March.
    2. Zhou, Qing, 2009. "Optimal investment for an insurer in the Lévy market: The martingale approach," Statistics & Probability Letters, Elsevier, vol. 79(14), pages 1602-1607, July.
    3. Zhao, Hui & Rong, Ximin & Zhao, Yonggan, 2013. "Optimal excess-of-loss reinsurance and investment problem for an insurer with jump–diffusion risk process under the Heston model," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 504-514.
    4. Jostein Paulsen, 2008. "Ruin models with investment income," Papers 0806.4125, arXiv.org, revised Dec 2008.
    5. Nian Yao & Zhiming Yang, 2017. "Optimal excess-of-loss reinsurance and investment problem for an insurer with default risk under a stochastic volatility model," Papers 1704.08234, arXiv.org.
    6. Guan, Guohui & Liang, Zongxia, 2014. "Optimal reinsurance and investment strategies for insurer under interest rate and inflation risks," Insurance: Mathematics and Economics, Elsevier, vol. 55(C), pages 105-115.
    7. Xiang Lin, 2009. "Ruin theory for classical risk process that is perturbed by diffusion with risky investments," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 25(1), pages 33-44, January.
    8. Arash Fahim & Lingjiong Zhu, 2015. "Optimal Investment in a Dual Risk Model," Papers 1510.04924, arXiv.org, revised Feb 2023.
    9. Hanqing Jin & Xun Yu Zhou, 2008. "Behavioral Portfolio Selection In Continuous Time," Mathematical Finance, Wiley Blackwell, vol. 18(3), pages 385-426, July.
    10. Liang, Zhibin & Yuen, Kam Chuen & Guo, Junyi, 2011. "Optimal proportional reinsurance and investment in a stock market with Ornstein-Uhlenbeck process," Insurance: Mathematics and Economics, Elsevier, vol. 49(2), pages 207-215, September.
    11. Qianqian Zhou & Junyi Guo, 2020. "Optimal Control of Investment for an Insurer in Two Currency Markets," Papers 2006.02857, arXiv.org.
    12. Mao, Hong & Carson, James M. & Ostaszewski, Krzysztof M. & Wen, Zhongkai, 2013. "Optimal decision on dynamic insurance price and investment portfolio of an insurer," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 359-369.
    13. Begoña Fernández & Daniel Hernández-Hernández & Ana Meda & Patricia Saavedra, 2008. "An optimal investment strategy with maximal risk aversion and its ruin probability," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 68(1), pages 159-179, August.
    14. Yang Shen & Bin Zou, 2021. "Mean-Variance Investment and Risk Control Strategies -- A Time-Consistent Approach via A Forward Auxiliary Process," Papers 2101.03954, arXiv.org.
    15. Christensen, Bent Jesper & Parra-Alvarez, Juan Carlos & Serrano, Rafael, 2021. "Optimal control of investment, premium and deductible for a non-life insurance company," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 384-405.
    16. Li, Zhongfei & Yao, Jing & Li, Duan, 2010. "Behavior patterns of investment strategies under Roy's safety-first principle," The Quarterly Review of Economics and Finance, Elsevier, vol. 50(2), pages 167-179, May.
    17. Xu, Lin & Zhang, Liming & Yao, Dingjun, 2017. "Optimal investment and reinsurance for an insurer under Markov-modulated financial market," Insurance: Mathematics and Economics, Elsevier, vol. 74(C), pages 7-19.
    18. Liang, Zhibin & Bayraktar, Erhan, 2014. "Optimal reinsurance and investment with unobservable claim size and intensity," Insurance: Mathematics and Economics, Elsevier, vol. 55(C), pages 156-166.
    19. Guan, Guohui & Liang, Zongxia, 2019. "Robust optimal reinsurance and investment strategies for an AAI with multiple risks," Insurance: Mathematics and Economics, Elsevier, vol. 89(C), pages 63-78.
    20. Zhang, Xin-Li & Zhang, Ke-Cun & Yu, Xing-Jiang, 2009. "Optimal proportional reinsurance and investment with transaction costs, I: Maximizing the terminal wealth," Insurance: Mathematics and Economics, Elsevier, vol. 44(3), pages 473-478, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:58:y:2014:i:c:p:217-222. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.