IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v53y2013i3p733-746.html
   My bibliography  Save this article

Optimal reinsurance strategies in regime-switching jump diffusion models: Stochastic differential game formulation and numerical methods

Author

Listed:
  • Jin, Zhuo
  • Yin, G.
  • Wu, Fuke

Abstract

This work develops a stochastic differential game model between two insurance companies who adopt the optimal reinsurance strategies to reduce the risk. The surplus is modeled by a regime-switching jump diffusion process. A single payoff function is imposed, and one player devises an optimal strategy to maximize the expected payoff function, whereas the other player is trying to minimize the same quantity. Using dynamic programming principle, the upper and lower values of the game satisfy a coupled system of nonlinear integro-differential Hamilton–Jacobi–Isaacs (HJI) equations. Moreover, the existence of the saddle point for this game problem is verified. Because of the jumps and regime-switching, closed-form solutions are virtually impossible to obtain. Our effort is devoted to designing numerical methods. We use Markov chain approximation techniques to construct a discrete-time controlled Markov chain to approximate the value functions and optimal controls. Convergence of the approximation algorithms is proved. Examples are presented to illustrate the applicability of the numerical methods.

Suggested Citation

  • Jin, Zhuo & Yin, G. & Wu, Fuke, 2013. "Optimal reinsurance strategies in regime-switching jump diffusion models: Stochastic differential game formulation and numerical methods," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 733-746.
  • Handle: RePEc:eee:insuma:v:53:y:2013:i:3:p:733-746
    DOI: 10.1016/j.insmatheco.2013.09.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167668713001480
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.insmatheco.2013.09.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Suijs, J.P.M. & De Waegenaere, A.M.B. & Borm, P.E.M., 1996. "Stochastic Cooperative Games in Insurance and Reinsurance," Other publications TiSEM f2cd7428-cd39-4462-af76-2, Tilburg University, School of Economics and Management.
    2. T. Choulli & M. Taksar & X. Y. Zhou, 2001. "Excess-of-loss reinsurance for a company with debt liability and constraints on risk reduction," Quantitative Finance, Taylor & Francis Journals, vol. 1(6), pages 573-596.
    3. Taksar, Michael & Zeng, Xudong, 2011. "Optimal non-proportional reinsurance control and stochastic differential games," Insurance: Mathematics and Economics, Elsevier, vol. 48(1), pages 64-71, January.
    4. Sotomayor, Luz R. & Cadenillas, Abel, 2011. "Classical and singular stochastic control for the optimal dividend policy when there is regime switching," Insurance: Mathematics and Economics, Elsevier, vol. 48(3), pages 344-354, May.
    5. Suijs, Jeroen & De Waegenaere, Anja & Borm, Peter, 1998. "Stochastic cooperative games in insurance," Insurance: Mathematics and Economics, Elsevier, vol. 22(3), pages 209-228, July.
    6. Tak Siu, 2012. "A BSDE approach to risk-based asset allocation of pension funds with regime switching," Annals of Operations Research, Springer, vol. 201(1), pages 449-473, December.
    7. Bjarne Højgaard & Søren Asmussen & Michael Taksar, 2000. "Optimal risk control and dividend distribution policies. Example of excess-of loss reinsurance for an insurance corporation," Finance and Stochastics, Springer, vol. 4(3), pages 299-324.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ning Bin & Huainian Zhu & Chengke Zhang, 2023. "Stochastic Differential Games on Optimal Investment and Reinsurance Strategy with Delay Under the CEV Model," Methodology and Computing in Applied Probability, Springer, vol. 25(2), pages 1-27, June.
    2. Zou, Bin & Cadenillas, Abel, 2014. "Optimal investment and risk control policies for an insurer: Expected utility maximization," Insurance: Mathematics and Economics, Elsevier, vol. 58(C), pages 57-67.
    3. Asmussen, Søren & Christensen, Bent Jesper & Thøgersen, Julie, 2019. "Nash equilibrium premium strategies for push–pull competition in a frictional non-life insurance market," Insurance: Mathematics and Economics, Elsevier, vol. 87(C), pages 92-100.
    4. Bin Zou & Abel Cadenillas, 2017. "Optimal Investment and Liability Ratio Policies in a Multidimensional Regime Switching Model," Risks, MDPI, vol. 5(1), pages 1-22, January.
    5. Jin, Zhuo & Yang, Hailiang & Yin, G., 2021. "A hybrid deep learning method for optimal insurance strategies: Algorithms and convergence analysis," Insurance: Mathematics and Economics, Elsevier, vol. 96(C), pages 262-275.
    6. Zhu, Huainian & Cao, Ming & Zhang, Chengke, 2019. "Time-consistent investment and reinsurance strategies for mean-variance insurers with relative performance concerns under the Heston model," Finance Research Letters, Elsevier, vol. 30(C), pages 280-291.
    7. Jin, Zhuo & Yang, Hailiang & Yin, G., 2015. "Optimal debt ratio and dividend payment strategies with reinsurance," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 351-363.
    8. Cao, Jingyi & Li, Dongchen & Young, Virginia R. & Zou, Bin, 2023. "Reinsurance games with two reinsurers: Tree versus chain," European Journal of Operational Research, Elsevier, vol. 310(2), pages 928-941.
    9. Wei-han Liu, 2023. "Attaining stochastic optimal control over debt ratios in U.S. markets," Review of Quantitative Finance and Accounting, Springer, vol. 61(3), pages 967-993, October.
    10. Liu, Guo & Jin, Zhuo & Li, Shuanming & Zhang, Jiannan, 2022. "Stochastic asset allocation and reinsurance game under contagious claims," Finance Research Letters, Elsevier, vol. 49(C).
    11. Wang, Ning & Zhang, Nan & Jin, Zhuo & Qian, Linyi, 2021. "Stochastic differential investment and reinsurance games with nonlinear risk processes and VaR constraints," Insurance: Mathematics and Economics, Elsevier, vol. 96(C), pages 168-184.
    12. Meng, Hui & Li, Shuanming & Jin, Zhuo, 2015. "A reinsurance game between two insurance companies with nonlinear risk processes," Insurance: Mathematics and Economics, Elsevier, vol. 62(C), pages 91-97.
    13. Claire Mouminoux & Christophe Dutang & Stéphane Loisel & Hansjoerg Albrecher, 2022. "On a Markovian Game Model for Competitive Insurance Pricing," Methodology and Computing in Applied Probability, Springer, vol. 24(2), pages 1061-1091, June.
    14. Chen, Lv & Qian, Linyi & Shen, Yang & Wang, Wei, 2016. "Constrained investment–reinsurance optimization with regime switching under variance premium principle," Insurance: Mathematics and Economics, Elsevier, vol. 71(C), pages 253-267.
    15. Y. Zhang & Z. Jin & J. Wei & G. Yin, 2022. "Mean-variance portfolio selection with dynamic attention behavior in a hidden Markov model," Papers 2205.08743, arXiv.org.
    16. Bin Zou & Abel Cadenillas, 2014. "Optimal Investment and Risk Control Problem for an Insurer: Expected Utility Maximization," Papers 1402.3560, arXiv.org, revised Mar 2014.
    17. Zheng, Xiaoxiao & Zhou, Jieming & Sun, Zhongyang, 2016. "Robust optimal portfolio and proportional reinsurance for an insurer under a CEV model," Insurance: Mathematics and Economics, Elsevier, vol. 67(C), pages 77-87.
    18. Søren Asmussen & Bent Jesper Christensen & Julie Thøgersen, 2019. "Stackelberg Equilibrium Premium Strategies for Push-Pull Competition in a Non-Life Insurance Market with Product Differentiation," Risks, MDPI, vol. 7(2), pages 1-23, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhuo Jin & George Yin & Chao Zhu, 2011. "Numerical Solutions of Optimal Risk Control and Dividend Optimization Policies under A Generalized Singular Control Formulation," Papers 1111.2584, arXiv.org.
    2. Zhang, Nan & Jin, Zhuo & Li, Shuanming & Chen, Ping, 2016. "Optimal reinsurance under dynamic VaR constraint," Insurance: Mathematics and Economics, Elsevier, vol. 71(C), pages 232-243.
    3. J. Puerto & F. Fernández & Y. Hinojosa, 2008. "Partially ordered cooperative games: extended core and Shapley value," Annals of Operations Research, Springer, vol. 158(1), pages 143-159, February.
    4. Meng, Hui & Siu, Tak Kuen, 2011. "On optimal reinsurance, dividend and reinvestment strategies," Economic Modelling, Elsevier, vol. 28(1-2), pages 211-218, January.
    5. Donald Nganmegni Njoya & Issofa Moyouwou & Nicolas Gabriel Andjiga, 2021. "The equal-surplus Shapley value for chance-constrained games on finite sample spaces," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 93(3), pages 463-499, June.
    6. Liang, Zhibin & Young, Virginia R., 2012. "Dividends and reinsurance under a penalty for ruin," Insurance: Mathematics and Economics, Elsevier, vol. 50(3), pages 437-445.
    7. Jin, Zhuo & Yang, Hailiang & Yin, G., 2015. "Optimal debt ratio and dividend payment strategies with reinsurance," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 351-363.
    8. Tan, Ken Seng & Wei, Pengyu & Wei, Wei & Zhuang, Sheng Chao, 2020. "Optimal dynamic reinsurance policies under a generalized Denneberg’s absolute deviation principle," European Journal of Operational Research, Elsevier, vol. 282(1), pages 345-362.
    9. Løkka, Arne & Zervos, Mihail, 2008. "Optimal dividend and issuance of equity policies in the presence of proportional costs," Insurance: Mathematics and Economics, Elsevier, vol. 42(3), pages 954-961, June.
    10. Suijs, J.P.M., 1999. "Price Uncertainty in Linear Production Situations," Discussion Paper 1999-91, Tilburg University, Center for Economic Research.
    11. Laszlo A. Koczy, 2019. "The risk-based core for cooperative games with uncertainty," CERS-IE WORKING PAPERS 1906, Institute of Economics, Centre for Economic and Regional Studies.
    12. Zeng, Xudong & Luo, Shangzhen, 2013. "Stochastic Pareto-optimal reinsurance policies," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 671-677.
    13. Zuofeng Gao & Hongxin Bai & Suting Zhang & Yongbo Yu & Chunyan Han & Hua Zhang, 2008. "The -Core of a -person Stochastic Cooperative Game," Modern Applied Science, Canadian Center of Science and Education, vol. 2(2), pages 1-71, March.
    14. Peng, Xiaofan & Chen, Mi & Guo, Junyi, 2012. "Optimal dividend and equity issuance problem with proportional and fixed transaction costs," Insurance: Mathematics and Economics, Elsevier, vol. 51(3), pages 576-585.
    15. Stefan Thurner & Rudolf Hanel & Stefan Pichler, 2003. "Risk trading, network topology and banking regulation," Quantitative Finance, Taylor & Francis Journals, vol. 3(4), pages 306-319.
    16. Taksar, Michael & Zeng, Xudong, 2011. "Optimal non-proportional reinsurance control and stochastic differential games," Insurance: Mathematics and Economics, Elsevier, vol. 48(1), pages 64-71, January.
    17. Bjarne Højgaard & Michael Taksar, 2004. "Optimal dynamic portfolio selection for a corporation with controllable risk and dividend distribution policy," Quantitative Finance, Taylor & Francis Journals, vol. 4(3), pages 315-327.
    18. Suijs, J.P.M., 1998. "Cooperative decision making in a stochastic environment," Other publications TiSEM a84d779a-d5a9-48e9-bfe7-4, Tilburg University, School of Economics and Management.
    19. Zhu, Jinxia & Chen, Feng, 2013. "Dividend optimization for regime-switching general diffusions," Insurance: Mathematics and Economics, Elsevier, vol. 53(2), pages 439-456.
    20. Sotomayor, Luz R. & Cadenillas, Abel, 2011. "Classical and singular stochastic control for the optimal dividend policy when there is regime switching," Insurance: Mathematics and Economics, Elsevier, vol. 48(3), pages 344-354, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:53:y:2013:i:3:p:733-746. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.