IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v46y2010i2p406-414.html
   My bibliography  Save this article

Archimedean copula estimation and model selection via l1-norm symmetric distribution

Author

Listed:
  • Qu, Xiaomei
  • Zhou, Jie
  • Shen, Xiaojing

Abstract

Based on the relationship between Archimedean copulas and l1-norm symmetric distributions, we propose a method to not only estimate the copula parameter but also select the copula model through the observation data in this paper. The strong consistency of the estimator is proved, and a Radial Information Criteria (RIC) is provided to select the appropriate Archimedean copula model fitting the data best. It can be extended to the multivariate cases conveniently because the selection is achieved by using the one-dimensional radial distribution to capture the dependence structure for multivariate data. The Monte Carlo simulation experiments illustrate that the proposed approach works well in parameter estimation and model selection for both bivariate and multivariate cases. An application in modelling the dependence structure of real stock indices is carried out with good performance as well.

Suggested Citation

  • Qu, Xiaomei & Zhou, Jie & Shen, Xiaojing, 2010. "Archimedean copula estimation and model selection via l1-norm symmetric distribution," Insurance: Mathematics and Economics, Elsevier, vol. 46(2), pages 406-414, April.
  • Handle: RePEc:eee:insuma:v:46:y:2010:i:2:p:406-414
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-6687(09)00169-3
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Vaz de Melo Mendes, Beatriz & Martins de Souza, Rafael, 2004. "Measuring financial risks with copulas," International Review of Financial Analysis, Elsevier, vol. 13(1), pages 27-45.
    2. Christian Genest & Jean‐François Quessy & Bruno Rémillard, 2006. "Goodness‐of‐fit Procedures for Copula Models Based on the Probability Integral Transformation," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 33(2), pages 337-366, June.
    3. Fang, Kai-Tai & Fang, Bi-Qi, 1988. "Some families of mutivariate symmetric distributions related to exponential distribution," Journal of Multivariate Analysis, Elsevier, vol. 24(1), pages 109-122, January.
    4. Klugman, Stuart A. & Parsa, Rahul, 1999. "Fitting bivariate loss distributions with copulas," Insurance: Mathematics and Economics, Elsevier, vol. 24(1-2), pages 139-148, March.
    5. Huard, David & Evin, Guillaume & Favre, Anne-Catherine, 2006. "Bayesian copula selection," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 809-822, November.
    6. Lancaster, Tony, 1979. "Econometric Methods for the Duration of Unemployment," Econometrica, Econometric Society, vol. 47(4), pages 939-956, July.
    7. James Vaupel & Kenneth Manton & Eric Stallard, 1979. "The impact of heterogeneity in individual frailty on the dynamics of mortality," Demography, Springer;Population Association of America (PAA), vol. 16(3), pages 439-454, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Derrode, Stéphane & Pieczynski, Wojciech, 2013. "Unsupervised data classification using pairwise Markov chains with automatic copulas selection," Computational Statistics & Data Analysis, Elsevier, vol. 63(C), pages 81-98.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jean-David Fermanian, 2012. "An overview of the goodness-of-fit test problem for copulas," Papers 1211.4416, arXiv.org.
    2. Roch, Oriol & Alegre, Antonio, 2006. "Testing the bivariate distribution of daily equity returns using copulas. An application to the Spanish stock market," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 1312-1329, November.
    3. Jaap H. Abbring & Tim Salimans, 2019. "The Likelihood of Mixed Hitting Times," Papers 1905.03463, arXiv.org, revised Apr 2021.
    4. Xun Lu & Kin Lai & Liang Liang, 2014. "Portfolio value-at-risk estimation in energy futures markets with time-varying copula-GARCH model," Annals of Operations Research, Springer, vol. 219(1), pages 333-357, August.
    5. Pasanisi, Alberto & Fu, Shuai & Bousquet, Nicolas, 2012. "Estimating discrete Markov models from various incomplete data schemes," Computational Statistics & Data Analysis, Elsevier, vol. 56(9), pages 2609-2625.
    6. Abbring, Jaap H. & Salimans, Tim, 2021. "The likelihood of mixed hitting times," Journal of Econometrics, Elsevier, vol. 223(2), pages 361-375.
    7. Fantazzini, Dean, 2010. "Three-stage semi-parametric estimation of T-copulas: Asymptotics, finite-sample properties and computational aspects," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2562-2579, November.
    8. Bijwaard, Govert, 2011. "Unobserved Heterogeneity in Multiple-Spell Multiple-States Duration Models," IZA Discussion Papers 5748, Institute of Labor Economics (IZA).
    9. Wienke, Andreas & Kuss, Oliver, 2009. "Random effects Weibull regression model for occupational lifetime," European Journal of Operational Research, Elsevier, vol. 196(3), pages 1249-1250, August.
    10. Yoram Halevy, 2004. "Diminishing Impatience: Disentangling Time Preference from Uncertain Lifetime," Levine's Bibliography 122247000000000185, UCLA Department of Economics.
    11. Oriol Roch Casellas & Antonio Alegre Escolano, 2005. "Testing the bivariate distribution of daily equity returns using copulas. An application to the Spanish stock market," Working Papers in Economics 143, Universitat de Barcelona. Espai de Recerca en Economia.
    12. Bhatti, M. Ishaq & Nguyen, Cuong C., 2012. "Diversification evidence from international equity markets using extreme values and stochastic copulas," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 22(3), pages 622-646.
    13. Govert Bijwaard, 2014. "Multistate event history analysis with frailty," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 30(58), pages 1591-1620.
    14. Hess, Wolfgang & Persson, Maria, 2010. "The Duration of Trade Revisited. Continuous-Time vs. Discrete-Time Hazards," Working Papers 2010:1, Lund University, Department of Economics.
    15. Hussain, Saiful Izzuan & Li, Steven, 2018. "The dependence structure between Chinese and other major stock markets using extreme values and copulas," International Review of Economics & Finance, Elsevier, vol. 56(C), pages 421-437.
    16. Vicente G. Cancho & Gladys D. C. Barriga & Gauss M. Cordeiro & Edwin M. M. Ortega & Adriano K. Suzuki, 2021. "Bayesian survival model induced by frailty for lifetime with long‐term survivors," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 75(3), pages 299-323, August.
    17. Jaap H. Abbring & Gerard J. Van Den Berg, 2007. "The unobserved heterogeneity distribution in duration analysis," Biometrika, Biometrika Trust, vol. 94(1), pages 87-99.
    18. R B Davies, 1984. "A Generalised Beta-Logistic Model for Longitudinal Data with an Application to Residential Mobility," Environment and Planning A, , vol. 16(10), pages 1375-1386, October.
    19. S Reader, 1993. "Unobserved Heterogeneity in Dynamic Discrete Choice Models," Environment and Planning A, , vol. 25(4), pages 495-519, April.
    20. Abbring, Jaap H. & Berg, Gerard J. van den, 2000. "The non-parametric identification of the mixed proportional hazards competing risks model," Serie Research Memoranda 0024, VU University Amsterdam, Faculty of Economics, Business Administration and Econometrics.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:46:y:2010:i:2:p:406-414. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.