IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v37y2005i2p197-215.html
   My bibliography  Save this article

Calculation of finite time ruin probabilities for some risk models

Author

Listed:
  • Cardoso, Rui M.R.
  • Waters, Howard R.

Abstract

No abstract is available for this item.

Suggested Citation

  • Cardoso, Rui M.R. & Waters, Howard R., 2005. "Calculation of finite time ruin probabilities for some risk models," Insurance: Mathematics and Economics, Elsevier, vol. 37(2), pages 197-215, October.
  • Handle: RePEc:eee:insuma:v:37:y:2005:i:2:p:197-215
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-6687(04)00126-X
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Albrecher, Hansjorg & Teugels, Jozef L. & Tichy, Robert F., 2001. "On a gamma series expansion for the time-dependent probability of collective ruin," Insurance: Mathematics and Economics, Elsevier, vol. 29(3), pages 345-355, December.
    2. Michaud, Frédéric, 1996. "Estimating the Probability of Ruin for Variable Premiums by Simulation," ASTIN Bulletin, Cambridge University Press, vol. 26(1), pages 93-105, May.
    3. Cardoso, Rui M. R. & R. Waters, Howard, 2003. "Recursive calculation of finite time ruin probabilities under interest force," Insurance: Mathematics and Economics, Elsevier, vol. 33(3), pages 659-676, December.
    4. J. Michael Harrison & Sidney I. Resnick, 1978. "The Recurrence Classification of Risk and Storage Processes," Mathematics of Operations Research, INFORMS, vol. 3(1), pages 57-66, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andreas Karathanasopoulos & Chia Chun Lo & Xiaorong Ma & Zhenjiang Qin, 2021. "Maintaining cost and ruin probability," Review of Quantitative Finance and Accounting, Springer, vol. 57(2), pages 759-793, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jostein Paulsen, 2008. "Ruin models with investment income," Papers 0806.4125, arXiv.org, revised Dec 2008.
    2. Boxma, Onno & Frostig, Esther & Perry, David & Yosef, Rami, 2017. "A state dependent reinsurance model," Insurance: Mathematics and Economics, Elsevier, vol. 74(C), pages 170-181.
    3. Jasiulewicz, Helena, 2001. "Probability of ruin with variable premium rate in a Markovian environment," Insurance: Mathematics and Economics, Elsevier, vol. 29(2), pages 291-296, October.
    4. Albrecher, Hansjörg & Thonhauser, Stefan, 2008. "Optimal dividend strategies for a risk process under force of interest," Insurance: Mathematics and Economics, Elsevier, vol. 43(1), pages 134-149, August.
    5. Claude Lefèvre & Stéphane Loisel, 2008. "On Finite-Time Ruin Probabilities for Classical Risk Models," Post-Print hal-00168958, HAL.
    6. Cardoso, Rui M. R. & R. Waters, Howard, 2003. "Recursive calculation of finite time ruin probabilities under interest force," Insurance: Mathematics and Economics, Elsevier, vol. 33(3), pages 659-676, December.
    7. Onno Boxma & Michel Mandjes, 2021. "Shot-noise queueing models," Queueing Systems: Theory and Applications, Springer, vol. 99(1), pages 121-159, October.
    8. Paulsen, Jostein, 1998. "Ruin theory with compounding assets -- a survey," Insurance: Mathematics and Economics, Elsevier, vol. 22(1), pages 3-16, May.
    9. Paulsen, Jostein & Kasozi, Juma & Steigen, Andreas, 2005. "A numerical method to find the probability of ultimate ruin in the classical risk model with stochastic return on investments," Insurance: Mathematics and Economics, Elsevier, vol. 36(3), pages 399-420, June.
    10. Mijatović, Aleksandar & Vidmar, Matija & Jacka, Saul, 2015. "Markov chain approximations to scale functions of Lévy processes," Stochastic Processes and their Applications, Elsevier, vol. 125(10), pages 3932-3957.
    11. Albrecher, Hansjörg & Cheung, Eric C.K. & Liu, Haibo & Woo, Jae-Kyung, 2022. "A bivariate Laguerre expansions approach for joint ruin probabilities in a two-dimensional insurance risk process," Insurance: Mathematics and Economics, Elsevier, vol. 103(C), pages 96-118.
    12. Mehmet Akif Yazici & Nail Akar, 2017. "The finite/infinite horizon ruin problem with multi-threshold premiums: a Markov fluid queue approach," Annals of Operations Research, Springer, vol. 252(1), pages 85-99, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:37:y:2005:i:2:p:197-215. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.