IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v31y2002i1p105-113.html
   My bibliography  Save this article

Measuring sensitivity in a bonus-malus system

Author

Listed:
  • Gomez, E.
  • Hernandez, A.
  • Perez, J. M.
  • Vazquez-Polo, F. J.

Abstract

No abstract is available for this item.

Suggested Citation

  • Gomez, E. & Hernandez, A. & Perez, J. M. & Vazquez-Polo, F. J., 2002. "Measuring sensitivity in a bonus-malus system," Insurance: Mathematics and Economics, Elsevier, vol. 31(1), pages 105-113, August.
  • Handle: RePEc:eee:insuma:v:31:y:2002:i:1:p:105-113
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-6687(02)00125-7
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lemaire, Jean, 1979. "How to Define a Bonus-Malus System with an Exponential Utility Function," ASTIN Bulletin, Cambridge University Press, vol. 10(3), pages 274-282, December.
    2. Freddy Corlier & Jean Lemaire & Dunia Muhokolo, 1979. "Simulation of an automobile portfolio," ULB Institutional Repository 2013/167417, ULB -- Universite Libre de Bruxelles.
    3. Lemaire, Jean, 1988. "Construction of the New Belgian Motor Third Party Tariff Structure," ASTIN Bulletin, Cambridge University Press, vol. 18(1), pages 99-112, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Azaare Jacob & Zhao Wu, 2020. "An Alternative Pricing System through Bayesian Estimates and Method of Moments in a Bonus-Malus Framework for the Ghanaian Auto Insurance Market," JRFM, MDPI, vol. 13(7), pages 1-15, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. V'ictor Blanco & Jos'e M. P'erez-S'anchez, 2015. "On the aggregation of experts' information in Bonus-Malus systems," Papers 1511.03876, arXiv.org, revised Nov 2016.
    2. Serpil Bülbül & Kemal Baykal, 2016. "Optimal Bonus-Malus System Design in Motor Third-Party Liability Insurance in Turkey: Negative Binomial Model," International Journal of Economics and Finance, Canadian Center of Science and Education, vol. 8(8), pages 205-205, August.
    3. Boratyńska Agata, 2021. "Robust Bayesian insurance premium in a collective risk model with distorted priors under the generalised Bregman loss," Statistics in Transition New Series, Statistics Poland, vol. 22(3), pages 123-140, September.
    4. Morillo, Isabel & Bermudez, Lluis, 2003. "Bonus-malus system using an exponential loss function with an Inverse Gaussian distribution," Insurance: Mathematics and Economics, Elsevier, vol. 33(1), pages 49-57, August.
    5. Agata Boratyńska, 2021. "Robust Bayesian insurance premium in a collective risk model with distorted priors under the generalised Bregman loss," Statistics in Transition New Series, Polish Statistical Association, vol. 22(3), pages 123-140, September.
    6. Gómez-Déniz, Emilio & Sarabia, José Mari­a & Calderi­n-Ojeda, Enrique, 2008. "Univariate and multivariate versions of the negative binomial-inverse Gaussian distributions with applications," Insurance: Mathematics and Economics, Elsevier, vol. 42(1), pages 39-49, February.
    7. Villar Frexedas, Oscar & Vayá, Esther, 2005. "Financial Contagion between Economies: an Exploratory Spatial Analysis/Contagio financiero entre economías: Un análisis exploratorio espacial," Estudios de Economia Aplicada, Estudios de Economia Aplicada, vol. 23, pages 151-165, Abril.
    8. Emilio Gomez-deniz & Francisco Vazquez-polo, 2005. "Modelling uncertainty in insurance Bonus-Malus premium principles by using a Bayesian robustness approach," Journal of Applied Statistics, Taylor & Francis Journals, vol. 32(7), pages 771-784.
    9. Agustin Hernandez Bastida & Emilio Gomez Deniz & Jose Maria Perez Sanchez, 2009. "Bayesian robustness of the compound Poisson distribution under bidimensional prior: an application to the collective risk model," Journal of Applied Statistics, Taylor & Francis Journals, vol. 36(8), pages 853-869.
    10. Ojeda, Enrique Calderín & Déniz, Emilio Gómez & Cabrera Ortega, Ignacio J., 2007. "Bayesian local robustness under weighted squared-error loss function incorporating unimodality," Statistics & Probability Letters, Elsevier, vol. 77(1), pages 69-74, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:31:y:2002:i:1:p:105-113. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.