IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v32y2005i7p771-784.html
   My bibliography  Save this article

Modelling uncertainty in insurance Bonus-Malus premium principles by using a Bayesian robustness approach

Author

Listed:
  • Emilio Gomez-deniz
  • Francisco Vazquez-polo

Abstract

When Bayesian models are implemented for a Bonus-Malus System (BMS), a parametric structure, π0 (λ), is normally included in the insurer's portfolio. Following Bayesian sensitivity analysis, it is possible to model the structure function by specifying a class Γ of priors instead of a single prior. This paper examines the ranges of the relativities of the form, [image omitted] Standard and robust Bayesian tools are combined to show how the choice of the prior can affect the relative premiums. As an extension of the paper by Gomez et al. (2002b), our model is developed to the variance premium principle and the class of prior densities extended to ones that are more realistic in an actuarial setting, i.e. classes of generalized moments conditions. The proposed method is illustrated with data from Lemaire (1979). The main aim of the paper is to demonstrate an appropriate methodology to perform a Bayesian sensitivity analysis of the Bonus-Malus of loaded premiums.

Suggested Citation

  • Emilio Gomez-deniz & Francisco Vazquez-polo, 2005. "Modelling uncertainty in insurance Bonus-Malus premium principles by using a Bayesian robustness approach," Journal of Applied Statistics, Taylor & Francis Journals, vol. 32(7), pages 771-784.
  • Handle: RePEc:taf:japsta:v:32:y:2005:i:7:p:771-784
    DOI: 10.1080/02664760500079746
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/02664760500079746
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664760500079746?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lemaire, Jean, 1979. "How to Define a Bonus-Malus System with an Exponential Utility Function," ASTIN Bulletin, Cambridge University Press, vol. 10(3), pages 274-282, December.
    2. David Scollnik, 2001. "Actuarial Modeling with MCMC and BUGs," North American Actuarial Journal, Taylor & Francis Journals, vol. 5(2), pages 96-124.
    3. Makov, Udi E., 1995. "Loss robustness via Fisher-weighted squared-error loss function," Insurance: Mathematics and Economics, Elsevier, vol. 16(1), pages 1-6, April.
    4. Eichenauer, Jurgen & Lehn, Jurgen & Rettig, Stefan, 1988. "A gamma-minimax result in credibility theory," Insurance: Mathematics and Economics, Elsevier, vol. 7(1), pages 49-57, January.
    5. Heilmann, Wolf-Rudiger, 1989. "Decision theoretic foundations of credibility theory," Insurance: Mathematics and Economics, Elsevier, vol. 8(1), pages 77-95, March.
    6. Frangos, Nicholas E. & Vrontos, Spyridon D., 2001. "Design of Optimal Bonus-Malus Systems With a Frequency and a Severity Component On an Individual Basis in Automobile Insurance," ASTIN Bulletin, Cambridge University Press, vol. 31(1), pages 1-22, May.
    7. Tremblay, Luc, 1992. "Using the Poisson Inverse Gaussian in Bonus-Malus Systems," ASTIN Bulletin, Cambridge University Press, vol. 22(1), pages 97-106, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Villar Frexedas, Oscar & Vayá, Esther, 2005. "Financial Contagion between Economies: an Exploratory Spatial Analysis/Contagio financiero entre economías: Un análisis exploratorio espacial," Estudios de Economia Aplicada, Estudios de Economia Aplicada, vol. 23, pages 151-165, Abril.
    2. Agustin Hernandez Bastida & Emilio Gomez Deniz & Jose Maria Perez Sanchez, 2009. "Bayesian robustness of the compound Poisson distribution under bidimensional prior: an application to the collective risk model," Journal of Applied Statistics, Taylor & Francis Journals, vol. 36(8), pages 853-869.
    3. A.Hernández-Bastida & M.P. Fernández-Sánchez & E. Gómez-Deniz, 2007. "Bayesian Analysis Of The Compound Collective Model; The Variance Premium Principle With Exponential Poisson And Gamma-Gamma Distributions," FEG Working Paper Series 07/02, Faculty of Economics and Business (University of Granada).
    4. E. Gómez-Déniz & F. Vázquez-Polo & J. Pérez, 2006. "A note on computing bonus-malus insurance premiums using a hierarchical bayesian framework," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 15(2), pages 345-359, September.
    5. Gómez Déniz, E. & Hernández Bastida, A. & Vázquez Polo, F.J., 1998. "Un Análisis de Sensibilidad del Proceso de Tarificación en los Seguros Generales," Estudios de Economia Aplicada, Estudios de Economia Aplicada, vol. 9, pages 19-34, Junio.
    6. Sánchez-Sánchez, M. & Sordo, M.A. & Suárez-Llorens, A. & Gómez-Déniz, E., 2019. "Deriving Robust Bayesian Premiums Under Bands Of Prior Distributions With Applications," ASTIN Bulletin, Cambridge University Press, vol. 49(1), pages 147-168, January.
    7. .Fernández Huerga, E., 2004. "Causas de la utilización del empleo temporal y la subcontratación: Análisis empírico de las industrias extractivas en León," Estudios de Economia Aplicada, Estudios de Economia Aplicada, vol. 22, pages 371(30á)-37, Agosto.
    8. Gomez-Deniz, E. & Perez-Sanchez, J.M. & Vazquez-Polo, F.J., 2006. "On the use of posterior regret [Gamma]-minimax actions to obtain credibility premiums," Insurance: Mathematics and Economics, Elsevier, vol. 39(1), pages 115-121, August.
    9. A.Hernández-Bastida & J. M. Pérez–Sánchez & E. Gómez-Deniz, 2007. "Bayesian Analysis Of The Compound Collective Model: The Net Premium Principle With Exponential Poisson And Gamma–Gamma Distributions," FEG Working Paper Series 07/03, Faculty of Economics and Business (University of Granada).
    10. Serpil Bülbül & Kemal Baykal, 2016. "Optimal Bonus-Malus System Design in Motor Third-Party Liability Insurance in Turkey: Negative Binomial Model," International Journal of Economics and Finance, Canadian Center of Science and Education, vol. 8(8), pages 205-205, August.
    11. V'ictor Blanco & Jos'e M. P'erez-S'anchez, 2015. "On the aggregation of experts' information in Bonus-Malus systems," Papers 1511.03876, arXiv.org, revised Nov 2016.
    12. Agata Boratyńska, 2021. "Robust Bayesian insurance premium in a collective risk model with distorted priors under the generalised Bregman loss," Statistics in Transition New Series, Polish Statistical Association, vol. 22(3), pages 123-140, September.
    13. Pérez-Hornero, Patricia & Arias-Nicolás, José Pablo & Pulgarín, Antonio A. & Pulgarín, Antonio, 2013. "An annual JCR impact factor calculation based on Bayesian credibility formulas," Journal of Informetrics, Elsevier, vol. 7(1), pages 1-9.
    14. Tzougas, George & Vrontos, Spyridon & Frangos, Nicholas, 2018. "Bonus-Malus systems with two component mixture models arising from different parametric families," LSE Research Online Documents on Economics 84301, London School of Economics and Political Science, LSE Library.
    15. Emilio Gomez-Deniz & Enrique Calderin-Ojeda, 2010. "A study of Bayesian local robustness with applications in actuarial statistics," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(9), pages 1537-1546.
    16. Azaare Jacob & Zhao Wu, 2020. "An Alternative Pricing System through Bayesian Estimates and Method of Moments in a Bonus-Malus Framework for the Ghanaian Auto Insurance Market," JRFM, MDPI, vol. 13(7), pages 1-15, July.
    17. Gómez-Déniz, E., 2016. "Bivariate credibility bonus–malus premiums distinguishing between two types of claims," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 117-124.
    18. Ojeda, Enrique Calderín & Déniz, Emilio Gómez & Cabrera Ortega, Ignacio J., 2007. "Bayesian local robustness under weighted squared-error loss function incorporating unimodality," Statistics & Probability Letters, Elsevier, vol. 77(1), pages 69-74, January.
    19. Gómez Déniz, E. & Pérez Sánchez, J. M., 2001. "Fijación de primas de seguros bajo técnicas de robustez bayesiana," Estudios de Economia Aplicada, Estudios de Economia Aplicada, vol. 19, pages 5-20, Diciembre.
    20. Boratyńska Agata, 2021. "Robust Bayesian insurance premium in a collective risk model with distorted priors under the generalised Bregman loss," Statistics in Transition New Series, Polish Statistical Association, vol. 22(3), pages 123-140, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:32:y:2005:i:7:p:771-784. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.