IDEAS home Printed from https://ideas.repec.org/a/eee/ininma/v50y2020icp57-70.html
   My bibliography  Save this article

Prescriptive analytics: Literature review and research challenges

Author

Listed:
  • Lepenioti, Katerina
  • Bousdekis, Alexandros
  • Apostolou, Dimitris
  • Mentzas, Gregoris

Abstract

Business analytics aims to enable organizations to make quicker, better, and more intelligent decisions with the aim to create business value. To date, the major focus in the academic and industrial realms is on descriptive and predictive analytics. Nevertheless, prescriptive analytics, which seeks to find the best course of action for the future, has been increasingly gathering the research interest. Prescriptive analytics is often considered as the next step towards increasing data analytics maturity and leading to optimized decision making ahead of time for business performance improvement. This paper investigates the existing literature pertaining to prescriptive analytics and prominent methods for its implementation, provides clarity on the research field of prescriptive analytics, synthesizes the literature review in order to identify the existing research challenges, and outlines directions for future research.

Suggested Citation

  • Lepenioti, Katerina & Bousdekis, Alexandros & Apostolou, Dimitris & Mentzas, Gregoris, 2020. "Prescriptive analytics: Literature review and research challenges," International Journal of Information Management, Elsevier, vol. 50(C), pages 57-70.
  • Handle: RePEc:eee:ininma:v:50:y:2020:i:c:p:57-70
    DOI: 10.1016/j.ijinfomgt.2019.04.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0268401218309873
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijinfomgt.2019.04.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gasparini, Gaia & Brunelli, Matteo & Chiriac, Marius Dan, 2022. "Multi-period portfolio decision analysis: A case study in the infrastructure management sector," Operations Research Perspectives, Elsevier, vol. 9(C).
    2. Steffen Kurpiela & Frank Teuteberg, 2024. "Linking business analytics affordances to corporate strategic planning and decision making outcomes," Information Systems and e-Business Management, Springer, vol. 22(1), pages 33-60, March.
    3. Sel, Burakhan & Minner, Stefan, 2022. "A hedging policy for seaborne forward freight markets based on probabilistic forecasts," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 166(C).
    4. Rajat Kumar Behera & Pradip Kumar Bala & Nripendra P. Rana & Hatice Kizgin, 2022. "A Techno-Business Platform to Improve Customer Experience Following the Brand Crisis Recovery: A B2B Perspective," Information Systems Frontiers, Springer, vol. 24(6), pages 2027-2051, December.
    5. Feng, Yi & Yin, Yunqiang & Wang, Dujuan & Ignatius, Joshua & Cheng, T.C.E. & Marra, Marianna & Guo, Yihan, 2024. "Enhancing e-commerce customer churn management with a profit- and AUC-focused prescriptive analytics approach," Journal of Business Research, Elsevier, vol. 184(C).
    6. Wang, Shuaian & Yan, Ran, 2023. "Fundamental challenge and solution methods in prescriptive analytics for freight transportation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 169(C).
    7. Vinay Singh & Bhasker Choubey & Stephan Sauer, 2024. "Liquidity forecasting at corporate and subsidiary levels using machine learning," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 31(3), September.
    8. Han, Shuihua & Chen, Linlin & Su, Zhaopei & Gupta, Shivam & Sivarajah, Uthayasankar, 2024. "Identifying a good business location using prescriptive analytics: Restaurant location recommendation based on spatial data mining," Journal of Business Research, Elsevier, vol. 179(C).
    9. Latinovic, Zoran & Chatterjee, Sharmila C., 2022. "Achieving the promise of AI and ML in delivering economic and relational customer value in B2B," Journal of Business Research, Elsevier, vol. 144(C), pages 966-974.
    10. Day, Min-Yuh & Ni, Yensen, 2023. "Do clean energy indices outperform using contrarian strategies based on contrarian trading rules?," Energy, Elsevier, vol. 272(C).
    11. Oesterreich, Thuy Duong & Anton, Eduard & Teuteberg, Frank & Dwivedi, Yogesh K, 2022. "The role of the social and technical factors in creating business value from big data analytics: A meta-analysis," Journal of Business Research, Elsevier, vol. 153(C), pages 128-149.
    12. Yap, Wei Yim & Hsieh, Cheng-Hsien & Lee, Paul Tae-Woo, 2023. "Shipping connectivity data analytics: Implications for maritime policy," Transport Policy, Elsevier, vol. 132(C), pages 112-127.
    13. Akhtar, Pervaiz & Ghouri, Arsalan Mujahid & Ashraf, Aniqa & Lim, Jia Jia & Khan, Naveed R & Ma, Shuang, 2024. "Smart product platforming powered by AI and generative AI: Personalization for the circular economy," International Journal of Production Economics, Elsevier, vol. 273(C).
    14. Hayajneh, Jamal Abdelrahman .M. & Elayan, Malek Bakheet Haroun & Abdellatif, Mamdouh Abdallah Mohamed & Abubakar, A. Mohammed, 2022. "Impact of business analytics and π-shaped skills on innovative performance: Findings from PLS-SEM and fsQCA," Technology in Society, Elsevier, vol. 68(C).
    15. Sariyer, Gorkem & Kumar Mangla, Sachin & Chowdhury, Soumyadeb & Erkan Sozen, Mert & Kazancoglu, Yigit, 2024. "Predictive and prescriptive analytics for ESG performance evaluation: A case of Fortune 500 companies," Journal of Business Research, Elsevier, vol. 181(C).
    16. Friederike Paetz & Winfried J. Steiner & Harald Hruschka, 2022. "“Advanced data analysis techniques with marketing applications”," Journal of Business Economics, Springer, vol. 92(4), pages 557-561, May.
    17. Filom, Siyavash & Amiri, Amir M. & Razavi, Saiedeh, 2022. "Applications of machine learning methods in port operations – A systematic literature review," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 161(C).
    18. Christina C. Bartenschlager & Milena Grieger & Johanna Erber & Tobias Neidel & Stefan Borgmann & Jörg J. Vehreschild & Markus Steinbrecher & Siegbert Rieg & Melanie Stecher & Christine Dhillon & Maria, 2023. "Covid-19 triage in the emergency department 2.0: how analytics and AI transform a human-made algorithm for the prediction of clinical pathways," Health Care Management Science, Springer, vol. 26(3), pages 412-429, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ininma:v:50:y:2020:i:c:p:57-70. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/international-journal-of-information-management .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.