IDEAS home Printed from https://ideas.repec.org/a/eee/infome/v4y2010i3p291-312.html
   My bibliography  Save this article

Graph-based data mining: A new tool for the analysis and comparison of scientific domains represented as scientograms

Author

Listed:
  • Quirin, Arnaud
  • Cordón, Oscar
  • Vargas-Quesada, Benjamín
  • de Moya-Anegón, Félix

Abstract

The creation of some kind of representations depicting the current state of Science (or scientograms) is an established and beaten track for many years now. However, if we are concerned with the automatic comparison, analysis and understanding of a set of scientograms, showing for instance the evolution of a scientific domain or a face-to-face comparison of several countries, the task is titanically complex as the amount of data to analyze becomes huge and complex. In this paper, we aim to show that graph-based data mining tools are useful to deal with scientogram analysis. Subdue, the first algorithm proposed in the graph mining area, has been chosen for this purpose. This algorithm has been customized to deal with three different scientogram analysis tasks regarding the evolution of a scientific domain over time, the extraction of the common research categories substructures in the world, and the comparison of scientific domains between different countries. The outcomes obtained in the developed experiments have clearly demonstrated the potential of graph mining tools in scientogram analysis.

Suggested Citation

  • Quirin, Arnaud & Cordón, Oscar & Vargas-Quesada, Benjamín & de Moya-Anegón, Félix, 2010. "Graph-based data mining: A new tool for the analysis and comparison of scientific domains represented as scientograms," Journal of Informetrics, Elsevier, vol. 4(3), pages 291-312.
  • Handle: RePEc:eee:infome:v:4:y:2010:i:3:p:291-312
    DOI: 10.1016/j.joi.2010.01.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1751157710000052
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.joi.2010.01.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Richard Klavans & Kevin W. Boyack, 2006. "Quantitative evaluation of large maps of science," Scientometrics, Springer;Akadémiai Kiadó, vol. 68(3), pages 475-499, September.
    2. Kevin W. Boyack & Richard Klavans & Katy Börner, 2005. "Mapping the backbone of science," Scientometrics, Springer;Akadémiai Kiadó, vol. 64(3), pages 351-374, August.
    3. Chen, Chaomei & Chen, Yue & Horowitz, Mark & Hou, Haiyan & Liu, Zeyuan & Pellegrino, Donald, 2009. "Towards an explanatory and computational theory of scientific discovery," Journal of Informetrics, Elsevier, vol. 3(3), pages 191-209.
    4. Boyack, Kevin W. & Klavans, Richard, 2008. "Measuring science–technology interaction using rare inventor–author names," Journal of Informetrics, Elsevier, vol. 2(3), pages 173-182.
    5. Richard Klavans & Kevin W. Boyack, 2009. "Toward a consensus map of science," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 60(3), pages 455-476, March.
    6. I. Samoylenko & T.‐C. Chao & W.‐C. Liu & C.‐M. Chen, 2006. "Visualizing the scientific world and its evolution," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 57(11), pages 1461-1469, September.
    7. Félix Moya-Anegón & Benjamín Vargas-Quesada & Victor Herrero-Solana & Zaida Chinchilla-Rodríguez & Elena Corera-Álvarez & Francisco J. Munoz-Fernández, 2004. "A new technique for building maps of large scientific domains based on the cocitation of classes and categories," Scientometrics, Springer;Akadémiai Kiadó, vol. 61(1), pages 129-145, September.
    8. Matthew L. Wallace & Yves Gingras & Russell Duhon, 2009. "A new approach for detecting scientific specialties from raw cocitation networks," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 60(2), pages 240-246, February.
    9. Loet Leydesdorff & Ismael Rafols, 2009. "A global map of science based on the ISI subject categories," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 60(2), pages 348-362, February.
    10. Loet Leydesdorff & Thomas Schank, 2008. "Dynamic animations of journal maps: Indicators of structural changes and interdisciplinary developments," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 59(11), pages 1810-1818, September.
    11. Loet Leydesdorff, 2007. "Mapping interdisciplinarity at the interfaces between the Science Citation Index and the Social Science Citation Index," Scientometrics, Springer;Akadémiai Kiadó, vol. 71(3), pages 391-405, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wagner, Caroline S. & Roessner, J. David & Bobb, Kamau & Klein, Julie Thompson & Boyack, Kevin W. & Keyton, Joann & Rafols, Ismael & Börner, Katy, 2011. "Approaches to understanding and measuring interdisciplinary scientific research (IDR): A review of the literature," Journal of Informetrics, Elsevier, vol. 5(1), pages 14-26.
    2. Ying Huang & Wolfgang Glänzel & Lin Zhang, 2021. "Tracing the development of mapping knowledge domains," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(7), pages 6201-6224, July.
    3. Carusi, Chiara & Bianchi, Giuseppe, 2019. "Scientific community detection via bipartite scholar/journal graph co-clustering," Journal of Informetrics, Elsevier, vol. 13(1), pages 354-386.
    4. Loet Leydesdorff & Lutz Bornmann, 2012. "Mapping (USPTO) patent data using overlays to Google Maps," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 63(7), pages 1442-1458, July.
    5. Rongying Zhao & Bikun Chen, 2014. "Applying author co-citation analysis to user interaction analysis: a case study on instant messaging groups," Scientometrics, Springer;Akadémiai Kiadó, vol. 101(2), pages 985-997, November.
    6. Kevin W. Boyack & Katy Börner & Richard Klavans, 2009. "Mapping the structure and evolution of chemistry research," Scientometrics, Springer;Akadémiai Kiadó, vol. 79(1), pages 45-60, April.
    7. Kose, Toshihiro & Sakata, Ichiro, 2019. "Identifying technology convergence in the field of robotics research," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 751-766.
    8. Waltman, Ludo & van Eck, Nees Jan & Noyons, Ed C.M., 2010. "A unified approach to mapping and clustering of bibliometric networks," Journal of Informetrics, Elsevier, vol. 4(4), pages 629-635.
    9. Cassidy R. Sugimoto, 2011. "Looking across communicative genres: a call for inclusive indicators of interdisciplinarity," Scientometrics, Springer;Akadémiai Kiadó, vol. 86(2), pages 449-461, February.
    10. Su, Hsin-Ning & Moaniba, Igam M., 2017. "Investigating the dynamics of interdisciplinary evolution in technology developments," Technological Forecasting and Social Change, Elsevier, vol. 122(C), pages 12-23.
    11. Silva, F.N. & Viana, M.P. & Travençolo, B.A.N. & Costa, L. da F., 2011. "Investigating relationships within and between category networks in Wikipedia," Journal of Informetrics, Elsevier, vol. 5(3), pages 431-438.
    12. Ludo Waltman & Nees Jan Eck, 2012. "A new methodology for constructing a publication-level classification system of science," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 63(12), pages 2378-2392, December.
    13. Jielan Ding & Per Ahlgren & Liying Yang & Ting Yue, 2018. "Disciplinary structures in Nature, Science and PNAS: journal and country levels," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(3), pages 1817-1852, September.
    14. Wolfram, Dietmar & Zhao, Yuehua, 2014. "A comparison of journal similarity across six disciplines using citing discipline analysis," Journal of Informetrics, Elsevier, vol. 8(4), pages 840-853.
    15. Miguel R. Guevara & Dominik Hartmann & Manuel Aristarán & Marcelo Mendoza & César A. Hidalgo, 2016. "The research space: using career paths to predict the evolution of the research output of individuals, institutions, and nations," Scientometrics, Springer;Akadémiai Kiadó, vol. 109(3), pages 1695-1709, December.
    16. Hofmann, Peter & Keller, Robert & Urbach, Nils, 2019. "Inter-technology relationship networks: Arranging technologies through text mining," Technological Forecasting and Social Change, Elsevier, vol. 143(C), pages 202-213.
    17. Ismael Rafols & Martin Meyer, 2010. "Diversity and network coherence as indicators of interdisciplinarity: case studies in bionanoscience," Scientometrics, Springer;Akadémiai Kiadó, vol. 82(2), pages 263-287, February.
    18. Ismael Rafols & Alan Porter & Loet Leydesdorff, 2009. "Overlay Maps of Science: a New Tool for Research Policy," SPRU Working Paper Series 179, SPRU - Science Policy Research Unit, University of Sussex Business School.
    19. Yan, Erjia & Ding, Ying & Cronin, Blaise & Leydesdorff, Loet, 2013. "A bird's-eye view of scientific trading: Dependency relations among fields of science," Journal of Informetrics, Elsevier, vol. 7(2), pages 249-264.
    20. Andrea Bonaccorsi & Nicola Melluso & Francesco Alessandro Massucci, 2022. "Exploring the antecedents of interdisciplinarity at the European Research Council: a topic modeling approach," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(12), pages 6961-6991, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:infome:v:4:y:2010:i:3:p:291-312. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/joi .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.