IDEAS home Printed from https://ideas.repec.org/a/eee/infome/v1y2007i1p26-34.html
   My bibliography  Save this article

Some measures for comparing citation databases

Author

Listed:
  • Bar-Ilan, Judit
  • Levene, Mark
  • Lin, Ayelet

Abstract

Citation analysis was traditionally based on data from the ISI Citation indexes. Now with the appearance of Scopus, and with the free citation tool Google Scholar methods and measures are need for comparing these tools. In this paper we propose a set of measures for computing the similarity between rankings induced by ordering the retrieved publications in decreasing order of the number of citations as reported by the specific tools. The applicability of these measures is demonstrated and the results show high similarities between the rankings of the ISI Web of Science and Scopus and lower similarities between Google Scholar and the other tools.

Suggested Citation

  • Bar-Ilan, Judit & Levene, Mark & Lin, Ayelet, 2007. "Some measures for comparing citation databases," Journal of Informetrics, Elsevier, vol. 1(1), pages 26-34.
  • Handle: RePEc:eee:infome:v:1:y:2007:i:1:p:26-34
    DOI: 10.1016/j.joi.2006.08.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1751157706000058
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.joi.2006.08.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Howard D. White, 2001. "Author-centered bibliometrics through CAMEOs: Characterizations automatically made and edited online," Scientometrics, Springer;Akadémiai Kiadó, vol. 50(3), pages 607-637, January.
    2. Howard D. White, 2001. "Author-centered bibliometrics through CAMEOs: Characterizations automatically made and edited online," Scientometrics, Springer;Akadémiai Kiadó, vol. 51(3), pages 607-637, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Omar Hernando Avila-Poveda, 2014. "Technical report: the trend of author compound names and its implications for authorship identity identification," Scientometrics, Springer;Akadémiai Kiadó, vol. 101(1), pages 833-846, October.
    2. Félix Moya-Anegón & Benjamín Vargas-Quesada & Victor Herrero-Solana & Zaida Chinchilla-Rodríguez & Elena Corera-Álvarez & Francisco J. Munoz-Fernández, 2004. "A new technique for building maps of large scientific domains based on the cocitation of classes and categories," Scientometrics, Springer;Akadémiai Kiadó, vol. 61(1), pages 129-145, September.
    3. Bar-Ilan, Judit, 2008. "Informetrics at the beginning of the 21st century—A review," Journal of Informetrics, Elsevier, vol. 2(1), pages 1-52.
    4. Howard D. White, 2004. "Reward, persuasion, and the Sokal Hoax: A study in citation identities," Scientometrics, Springer;Akadémiai Kiadó, vol. 60(1), pages 93-120, May.
    5. Byungun Yoon & Sungjoo Lee & Gwanghee Lee, 2010. "Development and application of a keyword-based knowledge map for effective R&D planning," Scientometrics, Springer;Akadémiai Kiadó, vol. 85(3), pages 803-820, December.
    6. Christopher McCarty & James W. Jawitz & Allison Hopkins & Alex Goldman, 2013. "Predicting author h-index using characteristics of the co-author network," Scientometrics, Springer;Akadémiai Kiadó, vol. 96(2), pages 467-483, August.
    7. Wang, Peiling & Su, Jing, 2021. "Post-publication expert recommendations in faculty opinions (F1000Prime): Recommended articles and citations," Journal of Informetrics, Elsevier, vol. 15(3).
    8. Skupin, André, 2009. "Discrete and continuous conceptualizations of science: Implications for knowledge domain visualization," Journal of Informetrics, Elsevier, vol. 3(3), pages 233-245.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:infome:v:1:y:2007:i:1:p:26-34. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/joi .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.