IDEAS home Printed from https://ideas.repec.org/a/eee/infome/v10y2016i2p622-633.html
   My bibliography  Save this article

Are there too many uncited articles? Zero inflated variants of the discretised lognormal and hooked power law distributions

Author

Listed:
  • Thelwall, Mike

Abstract

Although statistical models fit many citation data sets reasonably well with the best fitting models being the hooked power law and discretised lognormal distribution, the fits are rarely close. One possible reason is that there might be more uncited articles than would be predicted by any model if some articles are inherently uncitable. Using data from 23 different Scopus categories, this article tests the assumption that removing a proportion of uncited articles from a citation dataset allows statistical distributions to have much closer fits. It also introduces two new models, zero inflated discretised lognormal distribution and the zero inflated hooked power law distribution and algorithms to fit them. In all 23 cases, the zero inflated version of the discretised lognormal distribution was an improvement on the standard version and in 16 out of 23 cases the zero inflated version of the hooked power law was an improvement on the standard version. Without zero inflation the discretised lognormal models fit the data better than the hooked power law distribution 6 out of 23 times and with it, the discretised lognormal models fit the data better than the hooked power law distribution 9 out of 23 times. Apparently uncitable articles seem to occur due to the presence of academic-related magazines in Scopus categories. In conclusion, future citation analysis and research indicators should take into account uncitable articles, and the best fitting distribution for sets of citation counts from a single subject and year is either the zero inflated discretised lognormal or zero inflated hooked power law.

Suggested Citation

  • Thelwall, Mike, 2016. "Are there too many uncited articles? Zero inflated variants of the discretised lognormal and hooked power law distributions," Journal of Informetrics, Elsevier, vol. 10(2), pages 622-633.
  • Handle: RePEc:eee:infome:v:10:y:2016:i:2:p:622-633
    DOI: 10.1016/j.joi.2016.04.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1751157716300153
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.joi.2016.04.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. H. P. F. Peters & A. F. J. van Raan, 1994. "On determinants of citation scores: A case study in chemical engineering," Journal of the American Society for Information Science, Association for Information Science & Technology, vol. 45(1), pages 39-49, January.
    2. S. Redner, 1998. "How popular is your paper? An empirical study of the citation distribution," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 4(2), pages 131-134, July.
    3. Michael H. MacRoberts & Barbara R. MacRoberts, 1989. "Problems of citation analysis: A critical review," Journal of the American Society for Information Science, Association for Information Science & Technology, vol. 40(5), pages 342-349, September.
    4. Michel Zitt, 2012. "The journal impact factor: angel, devil, or scapegoat? A comment on J.K. Vanclay’s article 2011," Scientometrics, Springer;Akadémiai Kiadó, vol. 92(2), pages 485-503, August.
    5. Vuong, Quang H, 1989. "Likelihood Ratio Tests for Model Selection and Non-nested Hypotheses," Econometrica, Econometric Society, vol. 57(2), pages 307-333, March.
    6. Terrence A. Brooks, 1985. "Private acts and public objects: An investigation of citer motivations," Journal of the American Society for Information Science, Association for Information Science & Technology, vol. 36(4), pages 223-229, July.
    7. Wilson, Paul, 2015. "The misuse of the Vuong test for non-nested models to test for zero-inflation," Economics Letters, Elsevier, vol. 127(C), pages 51-53.
    8. Ludo Waltman & Nees Jan Eck & Thed N. Leeuwen & Martijn S. Visser & Anthony F. J. Raan, 2011. "Towards a new crown indicator: an empirical analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 87(3), pages 467-481, June.
    9. Anthony F. J. Raan & Thed N. Leeuwen & Martijn S. Visser, 2011. "Severe language effect in university rankings: particularly Germany and France are wronged in citation-based rankings," Scientometrics, Springer;Akadémiai Kiadó, vol. 88(2), pages 495-498, August.
    10. Didegah, Fereshteh & Thelwall, Mike, 2013. "Which factors help authors produce the highest impact research? Collaboration, journal and document properties," Journal of Informetrics, Elsevier, vol. 7(4), pages 861-873.
    11. Gillespie, Colin S., 2015. "Fitting Heavy Tailed Distributions: The poweRlaw Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 64(i02).
    12. van Raan, Anthony F.J., 2001. "Two-step competition process leads to quasi power-law income distributions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 298(3), pages 530-536.
    13. Thelwall, Mike & Wilson, Paul, 2014. "Distributions for cited articles from individual subjects and years," Journal of Informetrics, Elsevier, vol. 8(4), pages 824-839.
    14. David A. King, 2004. "The scientific impact of nations," Nature, Nature, vol. 430(6997), pages 311-316, July.
    15. Thelwall, Mike, 2016. "The discretised lognormal and hooked power law distributions for complete citation data: Best options for modelling and regression," Journal of Informetrics, Elsevier, vol. 10(2), pages 336-346.
    16. Fairclough, Ruth & Thelwall, Mike, 2015. "More precise methods for national research citation impact comparisons," Journal of Informetrics, Elsevier, vol. 9(4), pages 895-906.
    17. Ed J. Rinia & Thed N. van Leeuwen & Anthony F. J. van Raan, 2002. "Impact measures of interdisciplinary research in physics," Scientometrics, Springer;Akadémiai Kiadó, vol. 53(2), pages 241-248, February.
    18. Donald O. Case & Georgeann M. Higgins, 2000. "How can we investigate citation behavior? A study of reasons for citing literature in communication," Journal of the American Society for Information Science, Association for Information Science & Technology, vol. 51(7), pages 635-645.
    19. Waltman, Ludo & van Eck, Nees Jan & van Leeuwen, Thed N. & Visser, Martijn S. & van Raan, Anthony F.J., 2011. "Towards a new crown indicator: Some theoretical considerations," Journal of Informetrics, Elsevier, vol. 5(1), pages 37-47.
    20. Ludo Waltman & Michael Schreiber, 2013. "On the calculation of percentile-based bibliometric indicators," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 64(2), pages 372-379, February.
    21. Young-Ho Eom & Santo Fortunato, 2011. "Characterizing and Modeling Citation Dynamics," PLOS ONE, Public Library of Science, vol. 6(9), pages 1-7, September.
    22. Thelwall, Mike, 2016. "The precision of the arithmetic mean, geometric mean and percentiles for citation data: An experimental simulation modelling approach," Journal of Informetrics, Elsevier, vol. 10(1), pages 110-123.
    23. Per O. Seglen, 1992. "The skewness of science," Journal of the American Society for Information Science, Association for Information Science & Technology, vol. 43(9), pages 628-638, October.
    24. Thelwall, Mike & Fairclough, Ruth, 2015. "Geometric journal impact factors correcting for individual highly cited articles," Journal of Informetrics, Elsevier, vol. 9(2), pages 263-272.
    25. Jonathan M. Levitt & Mike Thelwall, 2008. "Is multidisciplinary research more highly cited? A macrolevel study," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 59(12), pages 1973-1984, October.
    26. Ludo Waltman & Clara Calero-Medina & Joost Kosten & Ed C.M. Noyons & Robert J.W. Tijssen & Nees Jan Eck & Thed N. Leeuwen & Anthony F.J. Raan & Martijn S. Visser & Paul Wouters, 2012. "The Leiden ranking 2011/2012: Data collection, indicators, and interpretation," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 63(12), pages 2419-2432, December.
    27. Charles Oppenheim & Susan P. Renn, 1978. "Highly cited old papers and the reasons why they continue to be cited," Journal of the American Society for Information Science, Association for Information Science & Technology, vol. 29(5), pages 225-231, September.
    28. Thelwall, Mike, 2016. "Are the discretised lognormal and hooked power law distributions plausible for citation data?," Journal of Informetrics, Elsevier, vol. 10(2), pages 454-470.
    29. Hicks, Diana, 2012. "Performance-based university research funding systems," Research Policy, Elsevier, vol. 41(2), pages 251-261.
    30. Abramo, Giovanni & Cicero, Tindaro & D’Angelo, Ciriaco Andrea, 2011. "Assessing the varying level of impact measurement accuracy as a function of the citation window length," Journal of Informetrics, Elsevier, vol. 5(4), pages 659-667.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Thelwall, Mike, 2017. "Three practical field normalised alternative indicator formulae for research evaluation," Journal of Informetrics, Elsevier, vol. 11(1), pages 128-151.
    2. Marzieh Shahmandi & Paul Wilson & Mike Thelwall, 2020. "A new algorithm for zero-modified models applied to citation counts," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(2), pages 993-1010, November.
    3. Katchanov, Yurij L. & Markova, Yulia V. & Shmatko, Natalia A., 2023. "Uncited papers in the structure of scientific communication," Journal of Informetrics, Elsevier, vol. 17(2).
    4. Mike Thelwall, 2019. "The influence of highly cited papers on field normalised indicators," Scientometrics, Springer;Akadémiai Kiadó, vol. 118(2), pages 519-537, February.
    5. Mrowinski, Maciej J. & Gagolewski, Marek & Siudem, Grzegorz, 2022. "Accidentality in journal citation patterns," Journal of Informetrics, Elsevier, vol. 16(4).
    6. Raminta Pranckutė, 2021. "Web of Science (WoS) and Scopus: The Titans of Bibliographic Information in Today’s Academic World," Publications, MDPI, vol. 9(1), pages 1-59, March.
    7. Zewen Hu & Yishan Wu & Jianjun Sun, 2018. "A quantitative analysis of determinants of non-citation using a panel data model," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(2), pages 843-861, August.
    8. Guillermo Armando Ronda-Pupo & J. Sylvan Katz, 2017. "The scaling relationship between degree centrality of countries and their citation-based performance on Management Information Systems," Scientometrics, Springer;Akadémiai Kiadó, vol. 112(3), pages 1285-1299, September.
    9. Mike Thelwall & Kayvan Kousha & Mahshid Abdoli, 2017. "Is medical research informing professional practice more highly cited? Evidence from AHFS DI Essentials in drugs.com," Scientometrics, Springer;Akadémiai Kiadó, vol. 112(1), pages 509-527, July.
    10. Banshal, Sumit Kumar & Gupta, Solanki & Lathabai, Hiran H & Singh, Vivek Kumar, 2022. "Power Laws in altmetrics: An empirical analysis," Journal of Informetrics, Elsevier, vol. 16(3).
    11. Guillermo Armando Ronda-Pupo & J. Sylvan Katz, 2018. "The power law relationship between citation impact and multi-authorship patterns in articles in Information Science & Library Science journals," Scientometrics, Springer;Akadémiai Kiadó, vol. 114(3), pages 919-932, March.
    12. Thelwall, Mike & Fairclough, Ruth, 2017. "The accuracy of confidence intervals for field normalised indicators," Journal of Informetrics, Elsevier, vol. 11(2), pages 530-540.
    13. Jeppe Nicolaisen & Tove Faber Frandsen, 2019. "Zero impact: a large-scale study of uncitedness," Scientometrics, Springer;Akadémiai Kiadó, vol. 119(2), pages 1227-1254, May.
    14. Mike Thelwall, 2017. "Are Mendeley reader counts useful impact indicators in all fields?," Scientometrics, Springer;Akadémiai Kiadó, vol. 113(3), pages 1721-1731, December.
    15. Guillermo Armando Ronda-Pupo, 2017. "The citation-based impact of complex innovation systems scales with the size of the system," Scientometrics, Springer;Akadémiai Kiadó, vol. 112(1), pages 141-151, July.
    16. Pablo Dorta-González & Rafael Suárez-Vega & María Isabel Dorta-González, 2020. "Open access effect on uncitedness: a large-scale study controlling by discipline, source type and visibility," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(3), pages 2619-2644, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Thelwall, Mike, 2016. "Citation count distributions for large monodisciplinary journals," Journal of Informetrics, Elsevier, vol. 10(3), pages 863-874.
    2. Waltman, Ludo, 2016. "A review of the literature on citation impact indicators," Journal of Informetrics, Elsevier, vol. 10(2), pages 365-391.
    3. Thelwall, Mike, 2016. "Are the discretised lognormal and hooked power law distributions plausible for citation data?," Journal of Informetrics, Elsevier, vol. 10(2), pages 454-470.
    4. Thelwall, Mike, 2016. "The precision of the arithmetic mean, geometric mean and percentiles for citation data: An experimental simulation modelling approach," Journal of Informetrics, Elsevier, vol. 10(1), pages 110-123.
    5. Thelwall, Mike, 2017. "Three practical field normalised alternative indicator formulae for research evaluation," Journal of Informetrics, Elsevier, vol. 11(1), pages 128-151.
    6. Thelwall, Mike, 2016. "The discretised lognormal and hooked power law distributions for complete citation data: Best options for modelling and regression," Journal of Informetrics, Elsevier, vol. 10(2), pages 336-346.
    7. Thelwall, Mike & Sud, Pardeep, 2016. "National, disciplinary and temporal variations in the extent to which articles with more authors have more impact: Evidence from a geometric field normalised citation indicator," Journal of Informetrics, Elsevier, vol. 10(1), pages 48-61.
    8. Fairclough, Ruth & Thelwall, Mike, 2015. "More precise methods for national research citation impact comparisons," Journal of Informetrics, Elsevier, vol. 9(4), pages 895-906.
    9. Thelwall, Mike, 2018. "Do females create higher impact research? Scopus citations and Mendeley readers for articles from five countries," Journal of Informetrics, Elsevier, vol. 12(4), pages 1031-1041.
    10. Mike Thelwall, 2016. "Interpreting correlations between citation counts and other indicators," Scientometrics, Springer;Akadémiai Kiadó, vol. 108(1), pages 337-347, July.
    11. Thelwall, Mike & Fairclough, Ruth, 2017. "The accuracy of confidence intervals for field normalised indicators," Journal of Informetrics, Elsevier, vol. 11(2), pages 530-540.
    12. Kong, Ling & Wang, Dongbo, 2020. "Comparison of citations and attention of cover and non-cover papers," Journal of Informetrics, Elsevier, vol. 14(4).
    13. Vîiu, Gabriel-Alexandru, 2018. "The lognormal distribution explains the remarkable pattern documented by characteristic scores and scales in scientometrics," Journal of Informetrics, Elsevier, vol. 12(2), pages 401-415.
    14. Thelwall, Mike & Wilson, Paul, 2014. "Distributions for cited articles from individual subjects and years," Journal of Informetrics, Elsevier, vol. 8(4), pages 824-839.
    15. Thelwall, Mike & Wilson, Paul, 2014. "Regression for citation data: An evaluation of different methods," Journal of Informetrics, Elsevier, vol. 8(4), pages 963-971.
    16. Confraria, Hugo & Mira Godinho, Manuel & Wang, Lili, 2017. "Determinants of citation impact: A comparative analysis of the Global South versus the Global North," Research Policy, Elsevier, vol. 46(1), pages 265-279.
    17. Chen, Shiji & Arsenault, Clément & Larivière, Vincent, 2015. "Are top-cited papers more interdisciplinary?," Journal of Informetrics, Elsevier, vol. 9(4), pages 1034-1046.
    18. S. R. Goldberg & H. Anthony & T. S. Evans, 2015. "Modelling citation networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 105(3), pages 1577-1604, December.
    19. Mingers, John & Leydesdorff, Loet, 2015. "A review of theory and practice in scientometrics," European Journal of Operational Research, Elsevier, vol. 246(1), pages 1-19.
    20. Mike Thelwall & Kayvan Kousha, 2017. "ResearchGate versus Google Scholar: Which finds more early citations?," Scientometrics, Springer;Akadémiai Kiadó, vol. 112(2), pages 1125-1131, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:infome:v:10:y:2016:i:2:p:622-633. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/joi .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.