IDEAS home Printed from https://ideas.repec.org/a/eee/ijrema/v29y2012i2p192-201.html
   My bibliography  Save this article

Impact of online channel use on customer revenues and costs to serve: Considering product portfolios and self-selection

Author

Listed:
  • Gensler, Sonja
  • Leeflang, Peter
  • Skiera, Bernd

Abstract

Developing a strategy for online channels requires knowledge of the effects of customers' online use on their revenue and cost to serve, which ultimately influence customer profitability. The authors theoretically discuss and empirically examine these effects. An empirical study of retail banking customers reveals that online use improves customer profitability by increasing customer revenue and decreasing cost to serve. Moreover, the revenue effects of online use are substantially larger than the cost-to-serve effects, although the effects of online use on customer revenue and cost to serve vary by product portfolio. Self-selection effects also emerge and can be even greater than online use effects. Ignoring self-selection effects thus can lead to poor managerial decision-making.

Suggested Citation

  • Gensler, Sonja & Leeflang, Peter & Skiera, Bernd, 2012. "Impact of online channel use on customer revenues and costs to serve: Considering product portfolios and self-selection," International Journal of Research in Marketing, Elsevier, vol. 29(2), pages 192-201.
  • Handle: RePEc:eee:ijrema:v:29:y:2012:i:2:p:192-201
    DOI: 10.1016/j.ijresmar.2011.09.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167811612000079
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijresmar.2011.09.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Peter J. Danaher & Isaac W. Wilson & Robert A. Davis, 2003. "A Comparison of Online and Offline Consumer Brand Loyalty," Marketing Science, INFORMS, vol. 22(4), pages 461-476, February.
    2. A. Smith, Jeffrey & E. Todd, Petra, 2005. "Does matching overcome LaLonde's critique of nonexperimental estimators?," Journal of Econometrics, Elsevier, vol. 125(1-2), pages 305-353.
    3. James J. Heckman & Hidehiko Ichimura & Petra E. Todd, 1997. "Matching As An Econometric Evaluation Estimator: Evidence from Evaluating a Job Training Programme," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 64(4), pages 605-654.
    4. Junhong Chu & Pradeep Chintagunta & Javier Cebollada, 2008. "Research Note—A Comparison of Within-Household Price Sensitivity Across Online and Offline Channels," Marketing Science, INFORMS, vol. 27(2), pages 283-299, 03-04.
    5. Mei Xue & Lorin M. Hitt & Patrick T. Harker, 2007. "Customer Efficiency, Channel Usage, and Firm Performance in Retail Banking," Manufacturing & Service Operations Management, INFORMS, vol. 9(4), pages 535-558, April.
    6. Rajeev H. Dehejia & Sadek Wahba, 2002. "Propensity Score-Matching Methods For Nonexperimental Causal Studies," The Review of Economics and Statistics, MIT Press, vol. 84(1), pages 151-161, February.
    7. Stock, James H & Wright, Jonathan H & Yogo, Motohiro, 2002. "A Survey of Weak Instruments and Weak Identification in Generalized Method of Moments," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(4), pages 518-529, October.
    8. Dehejia, Rajeev, 2005. "Practical propensity score matching: a reply to Smith and Todd," Journal of Econometrics, Elsevier, vol. 125(1-2), pages 355-364.
    9. Pauwels, Koen & Leeflang, Peter S.H. & Teerling, Marije L. & Huizingh, K.R. Eelko, 2011. "Does Online Information Drive Offline Revenues?," Journal of Retailing, Elsevier, vol. 87(1), pages 1-17.
    10. Dennis Campbell & Frances Frei, 2010. "Cost Structure, Customer Profitability, and Retention Implications of Self-Service Distribution Channels: Evidence from Customer Behavior in an Online Banking Channel," Management Science, INFORMS, vol. 56(1), pages 4-24, January.
    11. Mei Xue & Lorin M. Hitt & Pei-yu Chen, 2011. "Determinants and Outcomes of Internet Banking Adoption," Management Science, INFORMS, vol. 57(2), pages 291-307, February.
    12. James Heckman & Salvador Navarro-Lozano, 2004. "Using Matching, Instrumental Variables, and Control Functions to Estimate Economic Choice Models," The Review of Economics and Statistics, MIT Press, vol. 86(1), pages 30-57, February.
    13. Neslin, Scott A. & Shankar, Venkatesh, 2009. "Key Issues in Multichannel Customer Management: Current Knowledge and Future Directions," Journal of Interactive Marketing, Elsevier, vol. 23(1), pages 70-81.
    14. Erik Brynjolfsson & Yu (Jeffrey) Hu & Michael D. Smith, 2003. "Consumer Surplus in the Digital Economy: Estimating the Value of Increased Product Variety at Online Booksellers," Management Science, INFORMS, vol. 49(11), pages 1580-1596, November.
    15. Patrick Puhani, 2000. "The Heckman Correction for Sample Selection and Its Critique," Journal of Economic Surveys, Wiley Blackwell, vol. 14(1), pages 53-68, February.
    16. Woglom, Geoffrey, 2001. "More Results on the Exact Small Sample Properties of the Instrumental Variable Estimator," Econometrica, Econometric Society, vol. 69(5), pages 1381-1389, September.
    17. Forsythe, Sandra M. & Shi, Bo, 2003. "Consumer patronage and risk perceptions in Internet shopping," Journal of Business Research, Elsevier, vol. 56(11), pages 867-875, November.
    18. Sunil Mithas & M. S. Krishnan, 2009. "From Association to Causation via a Potential Outcomes Approach," Information Systems Research, INFORMS, vol. 20(2), pages 295-313, June.
    19. Schlosser, Ann E, 2003. "Experiencing Products in the Virtual World: The Role of Goal and Imagery in Influencing Attitudes versus Purchase Intentions," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 30(2), pages 184-198, September.
    20. Ariely, Dan, 2000. "Controlling the Information Flow: Effects on Consumers' Decision Making and Preferences," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 27(2), pages 233-248, September.
    21. Smith, Donnavieve N. & Sivakumar, K., 2004. "Flow and Internet shopping behavior: A conceptual model and research propositions," Journal of Business Research, Elsevier, vol. 57(10), pages 1199-1208, October.
    22. Zhong Zhao, 2004. "Using Matching to Estimate Treatment Effects: Data Requirements, Matching Metrics, and Monte Carlo Evidence," The Review of Economics and Statistics, MIT Press, vol. 86(1), pages 91-107, February.
    23. Rosenbaum, Paul R. & Ross, Richard N. & Silber, Jeffrey H., 2007. "Minimum Distance Matched Sampling With Fine Balance in an Observational Study of Treatment for Ovarian Cancer," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 75-83, March.
    24. Lorin M. Hitt & Frances X. Frei, 2002. "Do Better Customers Utilize Electronic Distribution Channels? The Case of PC Banking," Management Science, INFORMS, vol. 48(6), pages 732-748, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gensler, Sonja & Leeflang, Peter & Skiera, Bernd, 2013. "Comparing methods to separate treatment from self-selection effects in an online banking setting," Journal of Business Research, Elsevier, vol. 66(9), pages 1272-1278.
    2. Marco Caliendo & Sabine Kopeinig, 2008. "Some Practical Guidance For The Implementation Of Propensity Score Matching," Journal of Economic Surveys, Wiley Blackwell, vol. 22(1), pages 31-72, February.
    3. Li, Jing & Konuş, Umut & Pauwels, Koen & Langerak, Fred, 2015. "The Hare and the Tortoise: Do Earlier Adopters of Online Channels Purchase More?," Journal of Retailing, Elsevier, vol. 91(2), pages 289-308.
    4. Carlos A. Flores & Oscar A. Mitnik, 2009. "Evaluating Nonexperimental Estimators for Multiple Treatments: Evidence from Experimental Data," Working Papers 2010-10, University of Miami, Department of Economics.
    5. Guido W. Imbens & Jeffrey M. Wooldridge, 2009. "Recent Developments in the Econometrics of Program Evaluation," Journal of Economic Literature, American Economic Association, vol. 47(1), pages 5-86, March.
    6. Jochen Kluve & Boris Augurzky, 2007. "Assessing the performance of matching algorithms when selection into treatment is strong," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 22(3), pages 533-557.
    7. Tolga Bilgicer & Kamel Jedidi & Donald Lehmann & Scott Neslin, 2015. "The Long-Term Effect of Multichannel Usage on Sales," Customer Needs and Solutions, Springer;Institute for Sustainable Innovation and Growth (iSIG), vol. 2(1), pages 41-56, March.
    8. Gustavo Canavire-Bacarreza & Luis Castro Peñarrieta & Darwin Ugarte Ontiveros, 2021. "Outliers in Semi-Parametric Estimation of Treatment Effects," Econometrics, MDPI, vol. 9(2), pages 1-32, April.
    9. Zhao, Zhong, 2008. "Sensitivity of propensity score methods to the specifications," Economics Letters, Elsevier, vol. 98(3), pages 309-319, March.
    10. Dettmann, E. & Becker, C. & Schmeißer, C., 2011. "Distance functions for matching in small samples," Computational Statistics & Data Analysis, Elsevier, vol. 55(5), pages 1942-1960, May.
    11. Iacus, Stefano M. & Porro, Giuseppe, 2007. "Missing data imputation, matching and other applications of random recursive partitioning," Computational Statistics & Data Analysis, Elsevier, vol. 52(2), pages 773-789, October.
    12. David McKenzie & John Gibson & Steven Stillman, 2010. "How Important Is Selection? Experimental vs. Non-Experimental Measures of the Income Gains from Migration," Journal of the European Economic Association, MIT Press, vol. 8(4), pages 913-945, June.
    13. A. Smith, Jeffrey & E. Todd, Petra, 2005. "Does matching overcome LaLonde's critique of nonexperimental estimators?," Journal of Econometrics, Elsevier, vol. 125(1-2), pages 305-353.
    14. McKenzie, David & Gibson, John & Stillman, Steven, 2006. "How important is selection ? Experimental versus non-experimental measures of the income gains from migration," Policy Research Working Paper Series 3906, The World Bank.
    15. Anuj Kumar & Rahul Telang, 2012. "Does the Web Reduce Customer Service Cost? Empirical Evidence from a Call Center," Information Systems Research, INFORMS, vol. 23(3-part-1), pages 721-737, September.
    16. Jasmin Kantarevic & Boris Kralj, 2013. "Link Between Pay For Performance Incentives And Physician Payment Mechanisms: Evidence From The Diabetes Management Incentive In Ontario," Health Economics, John Wiley & Sons, Ltd., vol. 22(12), pages 1417-1439, December.
    17. Paudel, G. & Krishna, V. & McDonald, A., 2018. "Why some inferior technologies succeed? Examining the diffusion and impacts of rotavator tillage in Nepal Terai," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 277149, International Association of Agricultural Economists.
    18. Elisa Montaguti & Scott A. Neslin & Sara Valentini, 2016. "Can Marketing Campaigns Induce Multichannel Buying and More Profitable Customers? A Field Experiment," Marketing Science, INFORMS, vol. 35(2), pages 201-217, March.
    19. Li, Xi & Dahana, Wirawan Dony & Li, Tongmao & Yuan, Jingbo, 2021. "Behavioral changes of multichannel customers: Their persistence and influencing factors," Journal of Retailing and Consumer Services, Elsevier, vol. 58(C).
    20. Bakhtiari, Ali & Murthi, B.P.S. & Steffes, Erin, 2013. "Evaluating the Effect of Affinity Card Programs on Customer Profitability Using Propensity Score Matching," Journal of Interactive Marketing, Elsevier, vol. 27(2), pages 83-97.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ijrema:v:29:y:2012:i:2:p:192-201. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/international-journal-of-research-in-marketing/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.