IDEAS home Printed from https://ideas.repec.org/a/eee/ijocip/v23y2018icp49-67.html
   My bibliography  Save this article

On hardening problems in critical infrastructure systems

Author

Listed:
  • Banerjee, Joydeep
  • Basu, Kaustav
  • Sen, Arunabha

Abstract

The power and communication networks are highly interdependent and form a part of the critical infrastructure of a country. Similarly, dependencies exist within the networks itself. It is essential to have a model which captures these dependencies precisely. Previous research has proposed certain models but these models have certain limitations. The limitations of the aforementioned models have been overcome by the Implicative Interdependency Model, which uses Boolean Logic to denote the dependencies. This paper formulates the Entity Hardening problem and the Targeted Entity Hardening problem using the Implicative Interdependency Model. The Entity Hardening problem describes a situation where an operator, with a limited budget, must decide which entities to harden, which in turn would minimize the damage, provided a set of entities fail initially. The Targeted Entity Hardening problem is a restricted version of the Entity Hardening problem. This problem presents a scenario where, the protection of certain entities is of higher priority. If these entities were to be nonfunctional, the economic and societal damage would be higher when compared to other entities being nonfunctional. It has been shown that both problems are NP-Complete. An Integer Linear Program (ILP) has been devised to find the optimal solution. A heuristic has been described whose accuracy is found by comparing its performance with the optimal solution using real-world and simulated data.

Suggested Citation

  • Banerjee, Joydeep & Basu, Kaustav & Sen, Arunabha, 2018. "On hardening problems in critical infrastructure systems," International Journal of Critical Infrastructure Protection, Elsevier, vol. 23(C), pages 49-67.
  • Handle: RePEc:eee:ijocip:v:23:y:2018:i:c:p:49-67
    DOI: 10.1016/j.ijcip.2018.08.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1874548217300689
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijcip.2018.08.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Setola, Roberto & De Porcellinis, Stefano & Sforna, Marino, 2009. "Critical infrastructure dependency assessment using the input–output inoperability model," International Journal of Critical Infrastructure Protection, Elsevier, vol. 2(4), pages 170-178.
    2. Terry L. Friesz & Jose Holguín-Veras, 2005. "Dynamic Game-Theoretic Models of Urban Freight: Formulation and Solution Approach," Advances in Spatial Science, in: Aura Reggiani & Laurie A. Schintler (ed.), Methods and Models in Transport and Telecommunications, chapter 8, pages 143-161, Springer.
    3. Sergey V. Buldyrev & Roni Parshani & Gerald Paul & H. Eugene Stanley & Shlomo Havlin, 2010. "Catastrophic cascade of failures in interdependent networks," Nature, Nature, vol. 464(7291), pages 1025-1028, April.
    4. Alan Murray & Timothy Matisziw & Tony Grubesic, 2007. "Critical network infrastructure analysis: interdiction and system flow," Journal of Geographical Systems, Springer, vol. 9(2), pages 103-117, June.
    5. V. Rosato & L. Issacharoff & F. Tiriticco & S. Meloni & S. De Porcellinis & R. Setola, 2008. "Modelling interdependent infrastructures using interacting dynamical models," International Journal of Critical Infrastructures, Inderscience Enterprises Ltd, vol. 4(1/2), pages 63-79.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Yulong & Lin, Jie & Zhang, Chi & Zhu, Huaxing & Zeng, Saixing & Sun, Chengshaung, 2022. "Joint optimization of structure and protection of interdependent infrastructure networks," Reliability Engineering and System Safety, Elsevier, vol. 218(PB).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stergiopoulos, George & Kotzanikolaou, Panayiotis & Theocharidou, Marianthi & Lykou, Georgia & Gritzalis, Dimitris, 2016. "Time-based critical infrastructure dependency analysis for large-scale and cross-sectoral failures," International Journal of Critical Infrastructure Protection, Elsevier, vol. 12(C), pages 46-60.
    2. Hernandez-Fajardo, Isaac & Dueñas-Osorio, Leonardo, 2013. "Probabilistic study of cascading failures in complex interdependent lifeline systems," Reliability Engineering and System Safety, Elsevier, vol. 111(C), pages 260-272.
    3. Abbasizadeh, Ali & Azad-Farsani, Ehsan, 2024. "Cyber-constrained load shedding for smart grid resilience enhancement," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    4. Leto Peel & Tiago P. Peixoto & Manlio De Domenico, 2022. "Statistical inference links data and theory in network science," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    5. Liang, Yuan & Qi, Mingze & Huangpeng, Qizi & Duan, Xiaojun, 2023. "Percolation of interlayer feature-correlated multiplex networks," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    6. Wang, Jianwei & Jiang, Chen & Qian, Jianfei, 2014. "Robustness of interdependent networks with different link patterns against cascading failures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 393(C), pages 535-541.
    7. Guo, Hengdao & Zheng, Ciyan & Iu, Herbert Ho-Ching & Fernando, Tyrone, 2017. "A critical review of cascading failure analysis and modeling of power system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 9-22.
    8. Yi, Chengqi & Bao, Yuanyuan & Jiang, Jingchi & Xue, Yibo, 2015. "Modeling cascading failures with the crisis of trust in social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 256-271.
    9. Liu, Hao & Chen, Xin & Huo, Long & Zhang, Yadong & Niu, Chunming, 2022. "Impact of inter-network assortativity on robustness against cascading failures in cyber–physical power systems," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    10. Huang, Wei & Chen, Shengyong & Wang, Wanliang, 2014. "Navigation in spatial networks: A survey," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 393(C), pages 132-154.
    11. Zheng, Kexian & Liu, Ying & Gong, Jie & Wang, Wei, 2022. "Robustness of circularly interdependent networks," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    12. Kashin Sugishita & Yasuo Asakura, 2021. "Vulnerability studies in the fields of transportation and complex networks: a citation network analysis," Public Transport, Springer, vol. 13(1), pages 1-34, March.
    13. Ducruet, César, 2013. "Network diversity and maritime flows," Journal of Transport Geography, Elsevier, vol. 30(C), pages 77-88.
    14. Dong, Shangjia & Wang, Haizhong & Mostafizi, Alireza & Song, Xuan, 2020. "A network-of-networks percolation analysis of cascading failures in spatially co-located road-sewer infrastructure networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 538(C).
    15. Pei, Jianxin & Liu, Ying & Wang, Wei & Gong, Jie, 2021. "Cascading failures in multiplex network under flow redistribution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 583(C).
    16. Lee, Joohyun & Kwak, Jaewook & Lee, Hyang-Won & Shroff, Ness B., 2018. "Finding minimum node separators: A Markov chain Monte Carlo method," Reliability Engineering and System Safety, Elsevier, vol. 178(C), pages 225-235.
    17. César Ducruet & Laurent Beauguitte, 2014. "Spatial Science and Network Science: Review and Outcomes of a Complex Relationship," Networks and Spatial Economics, Springer, vol. 14(3), pages 297-316, December.
    18. Ahmed Ali A. Mohamed, 2019. "On the Rising Interdependency between the Power Grid, ICT Network, and E-Mobility: Modeling and Analysis," Energies, MDPI, vol. 12(10), pages 1-17, May.
    19. Ouyang, Min, 2016. "Critical location identification and vulnerability analysis of interdependent infrastructure systems under spatially localized attacks," Reliability Engineering and System Safety, Elsevier, vol. 154(C), pages 106-116.
    20. Cai, Wenxue & Liang, Fenfen & Wan, Yanchun & Zhong, Huiling & Gu, Yimiao, 2021. "An innovative approach for constructing a shipping index based on dynamic weighted complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 578(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ijocip:v:23:y:2018:i:c:p:49-67. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/international-journal-of-critical-infrastructure-protection .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.