IDEAS home Printed from https://ideas.repec.org/a/eee/ijocip/v17y2017icp15-27.html
   My bibliography  Save this article

Distributed monitoring for the prevention of cascading failures in operational power grids

Author

Listed:
  • Warnier, Martijn
  • Dulman, Stefan
  • Koç, Yakup
  • Pauwels, Eric

Abstract

Electrical power grids are vulnerable to cascading failures that can lead to large blackouts. The detection and prevention of cascading failures in power grids are important problems. Currently, grid operators mainly monitor the states (loading levels) of individual components in a power grid. The complex architecture of a power grid, with its many interdependencies, makes it difficult to aggregate the data provided by local components in a meaningful and timely manner. Indeed, monitoring the resilience of an operational power grid to cascading failures is a major challenge.

Suggested Citation

  • Warnier, Martijn & Dulman, Stefan & Koç, Yakup & Pauwels, Eric, 2017. "Distributed monitoring for the prevention of cascading failures in operational power grids," International Journal of Critical Infrastructure Protection, Elsevier, vol. 17(C), pages 15-27.
  • Handle: RePEc:eee:ijocip:v:17:y:2017:i:c:p:15-27
    DOI: 10.1016/j.ijcip.2017.03.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1874548216300427
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijcip.2017.03.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Stergiopoulos, George & Kotzanikolaou, Panayiotis & Theocharidou, Marianthi & Gritzalis, Dimitris, 2015. "Risk mitigation strategies for critical infrastructures based on graph centrality analysis," International Journal of Critical Infrastructure Protection, Elsevier, vol. 10(C), pages 34-44.
    2. Koç, Yakup & Warnier, Martijn & Van Mieghem, Piet & Kooij, Robert E. & Brazier, Frances M.T., 2014. "A topological investigation of phase transitions of cascading failures in power grids," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 415(C), pages 273-284.
    3. Bompard, Ettore & Napoli, Roberto & Xue, Fei, 2009. "Analysis of structural vulnerabilities in power transmission grids," International Journal of Critical Infrastructure Protection, Elsevier, vol. 2(1), pages 5-12.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abdellatif Elmouatamid & Radouane Ouladsine & Mohamed Bakhouya & Najib El Kamoun & Mohammed Khaidar & Khalid Zine-Dine, 2020. "Review of Control and Energy Management Approaches in Micro-Grid Systems," Energies, MDPI, vol. 14(1), pages 1-30, December.
    2. Su, Jia & Huang, Guangqiu, 2018. "Simulation and analysis of ecosystem vulnerability with cascading spread caused by dust migration based on object function GeoPetri net," Ecological Modelling, Elsevier, vol. 379(C), pages 54-72.
    3. Volker Turau & Christoph Weyer, 2019. "Cascading failures in complex networks caused by overload attacks," Journal of Heuristics, Springer, vol. 25(6), pages 837-859, December.
    4. Adriana Mar & Pedro Pereira & João F. Martins, 2019. "A Survey on Power Grid Faults and Their Origins: A Contribution to Improving Power Grid Resilience," Energies, MDPI, vol. 12(24), pages 1-21, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Galbraith, John W. & Iuliani, Luca, 2019. "Measures of robustness for networked critical infrastructure: An empirical comparison on four electrical grids," International Journal of Critical Infrastructure Protection, Elsevier, vol. 27(C).
    2. Gianluca Fulli & Marcelo Masera & Catalin Felix Covrig & Francesco Profumo & Ettore Bompard & Tao Huang, 2017. "The EU Electricity Security Decision-Analytic Framework: Status and Perspective Developments," Energies, MDPI, vol. 10(4), pages 1-20, March.
    3. Molina-Solana, Miguel & Ros, María & Ruiz, M. Dolores & Gómez-Romero, Juan & Martin-Bautista, M.J., 2017. "Data science for building energy management: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 598-609.
    4. Li, Zhitao & Tang, Jinjun & Zhao, Chuyun & Gao, Fan, 2023. "Improved centrality measure based on the adapted PageRank algorithm for urban transportation multiplex networks," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    5. Yang, Qihui & Scoglio, Caterina M. & Gruenbacher, Don M., 2021. "Robustness of supply chain networks against underload cascading failures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 563(C).
    6. Zio, E. & Golea, L.R. & Rocco S., C.M., 2012. "Identifying groups of critical edges in a realistic electrical network by multi-objective genetic algorithms," Reliability Engineering and System Safety, Elsevier, vol. 99(C), pages 172-177.
    7. Beccuti, Marco & Chiaradonna, Silvano & Di Giandomenico, Felicita & Donatelli, Susanna & Dondossola, Giovanna & Franceschinis, Giuliana, 2012. "Quantification of dependencies between electrical and information infrastructures," International Journal of Critical Infrastructure Protection, Elsevier, vol. 5(1), pages 14-27.
    8. Guo, Hengdao & Zheng, Ciyan & Iu, Herbert Ho-Ching & Fernando, Tyrone, 2017. "A critical review of cascading failure analysis and modeling of power system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 9-22.
    9. Trivik Verma & Wendy Ellens & Robert E. Kooij, 2015. "Context-independent centrality measures underestimate the vulnerability of power grids," International Journal of Critical Infrastructures, Inderscience Enterprises Ltd, vol. 11(1), pages 62-81.
    10. Yi, Chengqi & Bao, Yuanyuan & Jiang, Jingchi & Xue, Yibo, 2015. "Modeling cascading failures with the crisis of trust in social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 256-271.
    11. Zio, E. & Golea, L.R., 2012. "Analyzing the topological, electrical and reliability characteristics of a power transmission system for identifying its critical elements," Reliability Engineering and System Safety, Elsevier, vol. 101(C), pages 67-74.
    12. Filippini, Roberto & Silva, Andrés, 2014. "A modeling framework for the resilience analysis of networked systems-of-systems based on functional dependencies," Reliability Engineering and System Safety, Elsevier, vol. 125(C), pages 82-91.
    13. Kashin Sugishita & Yasuo Asakura, 2021. "Vulnerability studies in the fields of transportation and complex networks: a citation network analysis," Public Transport, Springer, vol. 13(1), pages 1-34, March.
    14. Rocchetta, Roberto, 2022. "Enhancing the resilience of critical infrastructures: Statistical analysis of power grid spectral clustering and post-contingency vulnerability metrics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    15. Gjorgiev, Blazhe & Sansavini, Giovanni, 2022. "Identifying and assessing power system vulnerabilities to transmission asset outages via cascading failure analysis," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    16. Nahmmacher, Paul & Schmid, Eva & Pahle, Michael & Knopf, Brigitte, 2016. "Strategies against shocks in power systems – An analysis for the case of Europe," Energy Economics, Elsevier, vol. 59(C), pages 455-465.
    17. Fei Xue & Yingyu Xu & Huaiying Zhu & Shaofeng Lu & Tao Huang & Jinling Zhang, 2017. "Structural Evaluation for Distribution Networks with Distributed Generation Based on Complex Network," Complexity, Hindawi, vol. 2017, pages 1-10, October.
    18. He, Zhidong & Navneet, Kumar & van Dam, Wirdmer & Van Mieghem, Piet, 2021. "Robustness assessment of multimodal freight transport networks," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    19. Tortosa, Leandro & Vicent, Jose F. & Yeghikyan, Gevorg, 2021. "An algorithm for ranking the nodes of multiplex networks with data based on the PageRank concept," Applied Mathematics and Computation, Elsevier, vol. 392(C).
    20. Zhang, Yifan & Ng, S. Thomas, 2021. "A hypothesis-driven framework for resilience analysis of public transport network under compound failure scenarios," International Journal of Critical Infrastructure Protection, Elsevier, vol. 35(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ijocip:v:17:y:2017:i:c:p:15-27. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/international-journal-of-critical-infrastructure-protection .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.