IDEAS home Printed from https://ideas.repec.org/a/eee/glofin/v59y2024ics1044028323001114.html
   My bibliography  Save this article

Limits of arbitrage and their impact on market efficiency: Evidence from China

Author

Listed:
  • Chen, Jian
  • Haboub, Ahmad
  • Khan, Ali

Abstract

This paper examines the impact of limits of arbitrage (LOA) on market efficiency by considering a large sample of Chinese stocks. Intraday market efficiency is measured using two widely used measures: the intraday return predictability measure and the variance ratio measure. We find that LOA plays a major role in driving market efficiency. We also use an exogenous shock, the introduction of Shenzhen Stock Connect, which increases trade volume and lowers LOA, to examine the impact of LOA on market efficiency. Our results indicate that this event improves market efficiency regarding both our measures. Therefore, we conclude that policy makers in China are acting in the right direction to elevate China's status in world markets by adapting policies that inherently make the country more attractive to global investors by lowering LOA and enhancing market efficiency.

Suggested Citation

  • Chen, Jian & Haboub, Ahmad & Khan, Ali, 2024. "Limits of arbitrage and their impact on market efficiency: Evidence from China," Global Finance Journal, Elsevier, vol. 59(C).
  • Handle: RePEc:eee:glofin:v:59:y:2024:i:c:s1044028323001114
    DOI: 10.1016/j.gfj.2023.100916
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1044028323001114
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.gfj.2023.100916?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Andrade, Sandro C. & Bian, Jiangze & Burch, Timothy R., 2013. "Analyst Coverage, Information, and Bubbles," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 48(5), pages 1573-1605, October.
    2. Andrew W. Lo, A. Craig MacKinlay, 1988. "Stock Market Prices do not Follow Random Walks: Evidence from a Simple Specification Test," The Review of Financial Studies, Society for Financial Studies, vol. 1(1), pages 41-66.
    3. Chung, Dennis Y. & Hrazdil, Karel, 2012. "Speed of convergence to market efficiency: The role of ECNs," Journal of Empirical Finance, Elsevier, vol. 19(5), pages 702-720.
    4. Gao, Lei & Han, Yufeng & Zhengzi Li, Sophia & Zhou, Guofu, 2018. "Market intraday momentum," Journal of Financial Economics, Elsevier, vol. 129(2), pages 394-414.
    5. Makarov, Igor & Schoar, Antoinette, 2020. "Trading and arbitrage in cryptocurrency markets," Journal of Financial Economics, Elsevier, vol. 135(2), pages 293-319.
    6. Alon Brav & J.B. Heaton & Si Li, 2010. "The Limits of the Limits of Arbitrage," Review of Finance, European Finance Association, vol. 14(1), pages 157-187.
    7. Yan Meng & Lingyun Xiong & Lijuan Xiao & Min Bai, 2023. "The effect of overseas investors on local market efficiency: evidence from the Shanghai/Shenzhen–Hong Kong Stock Connect," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-32, December.
    8. Upson, James & Van Ness, Robert A., 2017. "Multiple markets, algorithmic trading, and market liquidity," Journal of Financial Markets, Elsevier, vol. 32(C), pages 49-68.
    9. Kenneth A. Kim & Jungsoo Park, 2010. "Why Do Price Limits Exist in Stock Markets? A Manipulation†Based Explanation," European Financial Management, European Financial Management Association, vol. 16(2), pages 296-318, March.
    10. Amihud, Yakov & Mendelson, Haim & Lauterbach, Beni, 1997. "Market microstructure and securities values: Evidence from the Tel Aviv Stock Exchange," Journal of Financial Economics, Elsevier, vol. 45(3), pages 365-390, September.
    11. Allen, Franklin & Haas, Marlene D. & Nowak, Eric & Tengulov, Angel, 2021. "Market efficiency and limits to arbitrage: Evidence from the Volkswagen short squeeze," Journal of Financial Economics, Elsevier, vol. 142(1), pages 166-194.
    12. Brad M. Barber & Terrance Odean, 2008. "All That Glitters: The Effect of Attention and News on the Buying Behavior of Individual and Institutional Investors," The Review of Financial Studies, Society for Financial Studies, vol. 21(2), pages 785-818, April.
    13. Dominik M. Rösch & Avanidhar Subrahmanyam & Mathijs A. van Dijk, 2017. "The Dynamics of Market Efficiency," The Review of Financial Studies, Society for Financial Studies, vol. 30(4), pages 1151-1187.
    14. Bailey, Warren & Cai, Jun & Cheung, Yan Leung & Wang, Fenghua, 2009. "Stock returns, order imbalances, and commonality: Evidence on individual, institutional, and proprietary investors in China," Journal of Banking & Finance, Elsevier, vol. 33(1), pages 9-19, January.
    15. Lee, Charles M C & Ready, Mark J, 1991. "Inferring Trade Direction from Intraday Data," Journal of Finance, American Finance Association, vol. 46(2), pages 733-746, June.
    16. Anat R. Admati, Paul Pfleiderer, 1988. "A Theory of Intraday Patterns: Volume and Price Variability," The Review of Financial Studies, Society for Financial Studies, vol. 1(1), pages 3-40.
    17. Shleifer, Andrei & Vishny, Robert W, 1997. "The Limits of Arbitrage," Journal of Finance, American Finance Association, vol. 52(1), pages 35-55, March.
    18. Bogousslavsky, Vincent, 2021. "The cross-section of intraday and overnight returns," Journal of Financial Economics, Elsevier, vol. 141(1), pages 172-194.
    19. Steven L. Heston & Robert A. Korajczyk & Ronnie Sadka, 2010. "Intraday Patterns in the Cross‐section of Stock Returns," Journal of Finance, American Finance Association, vol. 65(4), pages 1369-1407, August.
    20. Marco Pagano, 1989. "Trading Volume and Asset Liquidity," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 104(2), pages 255-274.
    21. Chang, Eric C. & Luo, Yan & Ren, Jinjuan, 2014. "Short-selling, margin-trading, and price efficiency: Evidence from the Chinese market," Journal of Banking & Finance, Elsevier, vol. 48(C), pages 411-424.
    22. Alexander Ljungqvist & Wenlan Qian, 2016. "How Constraining Are Limits to Arbitrage?," The Review of Financial Studies, Society for Financial Studies, vol. 29(8), pages 1975-2028.
    23. Eric C. Chang & Joseph W. Cheng & Yinghui Yu, 2007. "Short‐Sales Constraints and Price Discovery: Evidence from the Hong Kong Market," Journal of Finance, American Finance Association, vol. 62(5), pages 2097-2121, October.
    24. Carrion, Allen, 2013. "Very fast money: High-frequency trading on the NASDAQ," Journal of Financial Markets, Elsevier, vol. 16(4), pages 680-711.
    25. Chordia, Tarun & Roll, Richard & Subrahmanyam, Avanidhar, 2005. "Evidence on the speed of convergence to market efficiency," Journal of Financial Economics, Elsevier, vol. 76(2), pages 271-292, May.
    26. Amihud, Yakov, 2002. "Illiquidity and stock returns: cross-section and time-series effects," Journal of Financial Markets, Elsevier, vol. 5(1), pages 31-56, January.
    27. Makarov, Igor & Schoar, Antoinette, 2020. "Trading and arbitrage in cryptocurrency markets," LSE Research Online Documents on Economics 100409, London School of Economics and Political Science, LSE Library.
    28. Conrad, Jennifer & Wahal, Sunil & Xiang, Jin, 2015. "High-frequency quoting, trading, and the efficiency of prices," Journal of Financial Economics, Elsevier, vol. 116(2), pages 271-291.
    29. Robert F. Stambaugh & Jianfeng Yu & Yu Yuan, 2015. "Arbitrage Asymmetry and the Idiosyncratic Volatility Puzzle," Journal of Finance, American Finance Association, vol. 70(5), pages 1903-1948, October.
    30. Chung, Dennis & Hrazdil, Karel, 2010. "Liquidity and market efficiency: A large sample study," Journal of Banking & Finance, Elsevier, vol. 34(10), pages 2346-2357, October.
    31. Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
    32. Tan, Xiaoyu & Zhang, Zili & Zhao, Xuejun & Wang, Chengxiang, 2021. "Investor sentiment and limits of arbitrage: Evidence from Chinese stock market," International Review of Economics & Finance, Elsevier, vol. 75(C), pages 577-595.
    33. Visaltanachoti, Nuttawat & Yang, Ting, 2010. "Speed of convergence to market efficiency for NYSE-listed foreign stocks," Journal of Banking & Finance, Elsevier, vol. 34(3), pages 594-605, March.
    34. Gu, Ming & Kang, Wenjin & Xu, Bu, 2018. "Limits of arbitrage and idiosyncratic volatility: Evidence from China stock market," Journal of Banking & Finance, Elsevier, vol. 86(C), pages 240-258.
    35. Deb, Saikat Sovan & Kalev, Petko S. & Marisetty, Vijaya B., 2010. "Are price limits really bad for equity markets?," Journal of Banking & Finance, Elsevier, vol. 34(10), pages 2462-2471, October.
    36. Tarun Chordia & T Clifton Green & Badrinath Kottimukkalur, 2018. "Rent Seeking by Low-Latency Traders: Evidence from Trading on Macroeconomic Announcements," The Review of Financial Studies, Society for Financial Studies, vol. 31(12), pages 4650-4687.
    37. Alex Edmans & Itay Goldstein & Wei Jiang, 2015. "Feedback Effects, Asymmetric Trading, and the Limits to Arbitrage," American Economic Review, American Economic Association, vol. 105(12), pages 3766-3797, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shimeng Shi & Jia Zhai & Yingying Wu, 2024. "Informational inefficiency on bitcoin futures," The European Journal of Finance, Taylor & Francis Journals, vol. 30(6), pages 642-667, April.
    2. Zhang, Chris H. & Frijns, Bart, 2019. "Noise trading and informational efficiency," EconStor Preprints 198037, ZBW - Leibniz Information Centre for Economics.
    3. Zhong, Meirui & Zhang, Rui & Ren, Xiaohang, 2023. "The time-varying effects of liquidity and market efficiency of the European Union carbon market: Evidence from the TVP-SVAR-SV approach," Energy Economics, Elsevier, vol. 123(C).
    4. Vinay Patel, 2015. "Price Discovery in US and Australian Stock and Options Markets," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 27, July-Dece.
    5. Rzayev, Khaladdin & Ibikunle, Gbenga, 2019. "A state-space modeling of the information content of trading volume," Journal of Financial Markets, Elsevier, vol. 46(C).
    6. Vinay Patel, 2015. "Price Discovery in US and Australian Stock and Options Markets," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 6-2015, January-A.
    7. Yingyi Hu, 2019. "Short-horizon market efficiency, order imbalance, and speculative trading: evidence from the Chinese stock market," Annals of Operations Research, Springer, vol. 281(1), pages 253-274, October.
    8. Jagjeev Dosanjh, 2017. "Exchange Initiatives and Market Efficiency: Evidence from the Australian Securities Exchange," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2017, January-A.
    9. Frijns, Bart & Indriawan, Ivan & Tourani-Rad, Alireza & Zhang, Hengbin, 2023. "The effect of equity market uncertainty on informational efficiency: Cross-sectional evidence," Global Finance Journal, Elsevier, vol. 57(C).
    10. Bogousslavsky, Vincent, 2021. "The cross-section of intraday and overnight returns," Journal of Financial Economics, Elsevier, vol. 141(1), pages 172-194.
    11. repec:uts:finphd:34 is not listed on IDEAS
    12. Feng, Frank Yulin & Kang, Wenjin & Zhang, Huiping, 2023. "Liquidity shocks and the negative premium of liquidity volatility around the world," Journal of International Money and Finance, Elsevier, vol. 139(C).
    13. Jie Cao & Tarun Chordia & Xintong Zhan, 2021. "The Calendar Effects of the Idiosyncratic Volatility Puzzle: A Tale of Two Days?," Management Science, INFORMS, vol. 67(12), pages 7866-7887, December.
    14. Choi, Gahyun & Park, Kwangyeol & Yi, Eojin & Ahn, Kwangwon, 2023. "Price fairness: Clean energy stocks and the overall market," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    15. Saggese, Pietro & Belmonte, Alessandro & Dimitri, Nicola & Facchini, Angelo & Böhme, Rainer, 2023. "Arbitrageurs in the Bitcoin ecosystem: Evidence from user-level trading patterns in the Mt. Gox exchange platform," Journal of Economic Behavior & Organization, Elsevier, vol. 213(C), pages 251-270.
    16. Linnenluecke, Martina K. & Chen, Xiaoyan & Ling, Xin & Smith, Tom & Zhu, Yushu, 2017. "Research in finance: A review of influential publications and a research agenda," Pacific-Basin Finance Journal, Elsevier, vol. 43(C), pages 188-199.
    17. Chung, Dennis & Hrazdil, Karel, 2010. "Liquidity and market efficiency: A large sample study," Journal of Banking & Finance, Elsevier, vol. 34(10), pages 2346-2357, October.
    18. Hatch, Brian C. & Johnson, Shane A. & Wang, Qin Emma & Zhang, Jun, 2021. "Algorithmic trading and firm value," Journal of Banking & Finance, Elsevier, vol. 125(C).
    19. Chung, Dennis Y. & Hrazdil, Karel & Trottier, Kim, 2015. "On the efficiency of intra-industry information transfers: The dilution of the overreaction anomaly," Journal of Banking & Finance, Elsevier, vol. 60(C), pages 153-167.
    20. Akbas, Ferhat & Boehmer, Ekkehart & Jiang, Chao & Koch, Paul D., 2022. "Overnight returns, daytime reversals, and future stock returns," Journal of Financial Economics, Elsevier, vol. 145(3), pages 850-875.
    21. Vayanos, Dimitri & Wang, Jiang, 2013. "Market Liquidity—Theory and Empirical Evidence ," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, volume 2, chapter 0, pages 1289-1361, Elsevier.

    More about this item

    Keywords

    Limits of arbitrage; Market efficiency; Chinese stock market; Intraday return predictability; And high-frequency trading;
    All these keywords.

    JEL classification:

    • E44 - Macroeconomics and Monetary Economics - - Money and Interest Rates - - - Financial Markets and the Macroeconomy
    • F65 - International Economics - - Economic Impacts of Globalization - - - Finance
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading
    • G15 - Financial Economics - - General Financial Markets - - - International Financial Markets
    • G23 - Financial Economics - - Financial Institutions and Services - - - Non-bank Financial Institutions; Financial Instruments; Institutional Investors

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:glofin:v:59:y:2024:i:c:s1044028323001114. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/620162 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.