IDEAS home Printed from https://ideas.repec.org/a/eee/gamebe/v67y2009i1p174-190.html
   My bibliography  Save this article

Stackelberg thresholds in network routing games or the value of altruism

Author

Listed:
  • Sharma, Yogeshwer
  • Williamson, David P.

Abstract

It is well known that the Nash equilibrium in network routing games can have strictly higher cost than the optimum cost. In Stackelberg routing games, where a fraction of flow is centrally-controlled, a natural problem is to route the centrally-controlled flow such that the overall cost of the resulting equilibrium is minimized. We consider the scenario where the network administrator wants to know the minimum amount of centrally-controlled flow such that the cost of the resulting equilibrium solution is strictly less than the cost of the Nash equilibrium. We call this threshold the Stackelberg threshold and prove that for networks of parallel links with linear latency functions, it is equal to the minimum of the Nash flows on links carrying more optimum flow than Nash flow. Our approach also provides a simpler proof of characterization of the minimum fraction that must be centrally controlled to induce the optimum solution.

Suggested Citation

  • Sharma, Yogeshwer & Williamson, David P., 2009. "Stackelberg thresholds in network routing games or the value of altruism," Games and Economic Behavior, Elsevier, vol. 67(1), pages 174-190, September.
  • Handle: RePEc:eee:gamebe:v:67:y:2009:i:1:p:174-190
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0899-8256(09)00129-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nisan, Noam & Ronen, Amir, 2001. "Algorithmic Mechanism Design," Games and Economic Behavior, Elsevier, vol. 35(1-2), pages 166-196, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Richárd Kicsiny, 2017. "Solution for a class of closed-loop leader-follower games with convexity conditions on the payoffs," Annals of Operations Research, Springer, vol. 253(1), pages 405-429, June.
    2. Kicsiny, R. & Varga, Z. & Scarelli, A., 2014. "Backward induction algorithm for a class of closed-loop Stackelberg games," European Journal of Operational Research, Elsevier, vol. 237(3), pages 1021-1036.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiayan Cheng & Rongheng Li & Yunxia Zhou, 0. "Tighter price of anarchy for selfish task allocation on selfish machines," Journal of Combinatorial Optimization, Springer, vol. 0, pages 1-32.
    2. Levin, Hagay & Schapira, Michael & Zohar, Aviv, 2006. "The Strategic Justification for BGP," MPRA Paper 2110, University Library of Munich, Germany.
    3. Shahar Dobzinski & Noam Nisan & Michael Schapira, 2005. "Truthful Randomized Mechanisms for Combinatorial Auctions," Discussion Paper Series dp408, The Federmann Center for the Study of Rationality, the Hebrew University, Jerusalem.
    4. M. Y. Jumba & Y. S. Haruna & U. O. Aliyu & A. L. Amao, 2024. "Application of Games Theory in Modelling of Nigerian Electricity Market," International Journal of Research and Scientific Innovation, International Journal of Research and Scientific Innovation (IJRSI), vol. 11(5), pages 1129-1140, May.
    5. Aziz, Haris & Chan, Hau & Lee, Barton E. & Parkes, David C., 2020. "The capacity constrained facility location problem," Games and Economic Behavior, Elsevier, vol. 124(C), pages 478-490.
    6. Rachel R. Chen & Robin O. Roundy & Rachel Q. Zhang & Ganesh Janakiraman, 2005. "Efficient Auction Mechanisms for Supply Chain Procurement," Management Science, INFORMS, vol. 51(3), pages 467-482, March.
    7. Zhiling Guo & Gary J. Koehler & Andrew B. Whinston, 2012. "A Computational Analysis of Bundle Trading Markets Design for Distributed Resource Allocation," Information Systems Research, INFORMS, vol. 23(3-part-1), pages 823-843, September.
    8. Yuval Emek & Michal Feldman, 2007. "Computing an Optimal Contract in Simple Technologies," Discussion Paper Series dp452, The Federmann Center for the Study of Rationality, the Hebrew University, Jerusalem.
    9. Parikshit De & Manipushpak Mitra, 2017. "Incentives and justice for sequencing problems," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 64(2), pages 239-264, August.
    10. Wada, Kentaro & Akamatsu, Takashi, 2013. "A hybrid implementation mechanism of tradable network permits system which obviates path enumeration: An auction mechanism with day-to-day capacity control," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 60(C), pages 94-112.
    11. Babaioff, Moshe & Blumrosen, Liad, 2008. "Computationally-feasible truthful auctions for convex bundles," Games and Economic Behavior, Elsevier, vol. 63(2), pages 588-620, July.
    12. Paul Gölz & Dominik Peters & Ariel Procaccia, 2022. "In This Apportionment Lottery, the House Always Wins," Post-Print hal-03834513, HAL.
    13. Laor Boongasame & Farhad Daneshgar, 2016. "An awareness-based meta-mechanism for e-commerce buyer coalitions," Information Systems Frontiers, Springer, vol. 18(3), pages 529-540, June.
    14. Kenryo Indo, 2007. "Proving Arrow’s theorem by PROLOG," Computational Economics, Springer;Society for Computational Economics, vol. 30(1), pages 57-63, August.
    15. Dobzinski, Shahar & Nisan, Noam, 2015. "Multi-unit auctions: Beyond Roberts," Journal of Economic Theory, Elsevier, vol. 156(C), pages 14-44.
    16. Ding, Xiaoshu & Qi, Qi & Jian, Sisi & Yang, Hai, 2023. "Mechanism design for Mobility-as-a-Service platform considering travelers’ strategic behavior and multidimensional requirements," Transportation Research Part B: Methodological, Elsevier, vol. 173(C), pages 1-30.
    17. Joseph Y. Halpern, 2007. "Computer Science and Game Theory: A Brief Survey," Papers cs/0703148, arXiv.org.
    18. Ian Ball & Deniz Kattwinkel, 2019. "Probabilistic Verification in Mechanism Design," Papers 1908.05556, arXiv.org, revised Jul 2024.
    19. Briskorn, Dirk & Waldherr, Stefan, 2022. "Anarchy in the UJ: Coordination mechanisms for minimizing the number of late jobs," European Journal of Operational Research, Elsevier, vol. 301(3), pages 815-827.
    20. Holzman, Ron & Kfir-Dahav, Noa & Monderer, Dov & Tennenholtz, Moshe, 2004. "Bundling equilibrium in combinatorial auctions," Games and Economic Behavior, Elsevier, vol. 47(1), pages 104-123, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:gamebe:v:67:y:2009:i:1:p:174-190. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/622836 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.