IDEAS home Printed from https://ideas.repec.org/a/eee/gamebe/v119y2020icp383-391.html
   My bibliography  Save this article

Jointly controlled lotteries with biased coins

Author

Listed:
  • Solan, Eilon
  • Solan, Omri N.
  • Solan, Ron

Abstract

We study the implementation of a jointly controlled lottery when the coins that are used by the players are exogenously given. We apply this result to show that every quitting game in which at least two players have at least two continue actions has an undiscounted ε-equilibrium, for every ε>0.

Suggested Citation

  • Solan, Eilon & Solan, Omri N. & Solan, Ron, 2020. "Jointly controlled lotteries with biased coins," Games and Economic Behavior, Elsevier, vol. 119(C), pages 383-391.
  • Handle: RePEc:eee:gamebe:v:119:y:2020:i:c:p:383-391
    DOI: 10.1016/j.geb.2018.11.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0899825618301830
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.geb.2018.11.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Forges, Françoise & Koessler, Frédéric, 2008. "Long persuasion games," Journal of Economic Theory, Elsevier, vol. 143(1), pages 1-35, November.
    2. Joseph Farrell & Matthew Rabin, 1996. "Cheap Talk," Journal of Economic Perspectives, American Economic Association, vol. 10(3), pages 103-118, Summer.
    3. Robert J. Aumann, 1995. "Repeated Games with Incomplete Information," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262011476, April.
    4. Kalai, Adam Tauman & Kalai, Ehud & Lehrer, Ehud & Samet, Dov, 2010. "A commitment folk theorem," Games and Economic Behavior, Elsevier, vol. 69(1), pages 127-137, May.
    5. repec:dau:papers:123456789/179 is not listed on IDEAS
    6. Flesch, J. & Schoenmakers, G.M. & Vrieze, K., 2008. "Stochastic games on a product state space: the periodic case," Research Memorandum 016, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
    7. János Flesch & Gijs Schoenmakers & Koos Vrieze, 2009. "Stochastic games on a product state space: the periodic case," International Journal of Game Theory, Springer;Game Theory Society, vol. 38(2), pages 263-289, June.
    8. Solan, Eilon, 2000. "Absorbing Team Games," Games and Economic Behavior, Elsevier, vol. 31(2), pages 245-261, May.
    9. Robert J. Aumann & Sergiu Hart, 2003. "Long Cheap Talk," Econometrica, Econometric Society, vol. 71(6), pages 1619-1660, November.
      • Robert J. Aumann & Sergiu Hart, 2002. "Long Cheap Talk," Discussion Paper Series dp284, The Federmann Center for the Study of Rationality, the Hebrew University, Jerusalem, revised Nov 2002.
    10. János Flesch & Gijs Schoenmakers & Koos Vrieze, 2008. "Stochastic Games on a Product State Space," Mathematics of Operations Research, INFORMS, vol. 33(2), pages 403-420, May.
    11. Gossner, Olivier & Vieille, Nicolas, 2002. "How to play with a biased coin?," Games and Economic Behavior, Elsevier, vol. 41(2), pages 206-226, November.
    12. Eilon Solan, 1999. "Three-Player Absorbing Games," Mathematics of Operations Research, INFORMS, vol. 24(3), pages 669-698, August.
    13. Lehrer, Ehud & Sorin, Sylvain, 1997. "One-Shot Public Mediated Talk," Games and Economic Behavior, Elsevier, vol. 20(2), pages 131-148, August.
    14. Flesch, J. & Thuijsman, F. & Vrieze, O.J., 2007. "Stochastic games with additive transitions," European Journal of Operational Research, Elsevier, vol. 179(2), pages 483-497, June.
    15. Robert Samuel Simon, 2012. "A Topological Approach to Quitting Games," Mathematics of Operations Research, INFORMS, vol. 37(1), pages 180-195, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Eilon Solan & Omri N. Solan, 2021. "Sunspot equilibrium in positive recursive general quitting games," International Journal of Game Theory, Springer;Game Theory Society, vol. 50(4), pages 891-909, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eilon Solan, 2018. "The modified stochastic game," International Journal of Game Theory, Springer;Game Theory Society, vol. 47(4), pages 1287-1327, November.
    2. Solan, Eilon, 2018. "Acceptable strategy profiles in stochastic games," Games and Economic Behavior, Elsevier, vol. 108(C), pages 523-540.
    3. J. Flesch & J. Kuipers & G. Schoenmakers & K. Vrieze, 2010. "Subgame Perfection in Positive Recursive Games with Perfect Information," Mathematics of Operations Research, INFORMS, vol. 35(1), pages 193-207, February.
    4. Flesch, J. & Kuipers, J. & Schoenmakers, G. & Vrieze, K., 2008. "Subgame-perfection in stochastic games with perfect information and recursive payoffs," Research Memorandum 041, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
    5. Xavier Venel, 2015. "Commutative Stochastic Games," Mathematics of Operations Research, INFORMS, vol. 40(2), pages 403-428, February.
    6. Peter Vida, 2005. "A Detail-free Mediator and the 3 Player Case," CERS-IE WORKING PAPERS 0511, Institute of Economics, Centre for Economic and Regional Studies.
    7. Vida, Péter & Āzacis, Helmuts, 2013. "A detail-free mediator," Games and Economic Behavior, Elsevier, vol. 81(C), pages 101-115.
    8. János Flesch & Gijs Schoenmakers & Koos Vrieze, 2009. "Stochastic games on a product state space: the periodic case," International Journal of Game Theory, Springer;Game Theory Society, vol. 38(2), pages 263-289, June.
    9. Golosov, Mikhail & Skreta, Vasiliki & Tsyvinski, Aleh & Wilson, Andrea, 2014. "Dynamic strategic information transmission," Journal of Economic Theory, Elsevier, vol. 151(C), pages 304-341.
    10. Renault, Jérôme & Solan, Eilon & Vieille, Nicolas, 2013. "Dynamic sender–receiver games," Journal of Economic Theory, Elsevier, vol. 148(2), pages 502-534.
    11. Françoise Forges & Ulrich Horst & Antoine Salomon, 2016. "Feasibility and individual rationality in two-person Bayesian games," International Journal of Game Theory, Springer;Game Theory Society, vol. 45(1), pages 11-36, March.
    12. Laraki, Rida & Renault, Jérôme, 2017. "Acyclic Gambling Games," TSE Working Papers 17-768, Toulouse School of Economics (TSE).
    13. Jacquemet, Nicolas & Koessler, Frédéric, 2013. "Using or hiding private information? An experimental study of zero-sum repeated games with incomplete information," Games and Economic Behavior, Elsevier, vol. 78(C), pages 103-120.
    14. Eilon Solan & Nicolas Vieille, 2010. "Computing uniformly optimal strategies in two-player stochastic games," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 42(1), pages 237-253, January.
    15. Johannes Hörner & Andrzej Skrzypacz, 2016. "Selling Information," Journal of Political Economy, University of Chicago Press, vol. 124(6), pages 1515-1562.
    16. Renault, Jerome & Tomala, Tristan, 2004. "Learning the state of nature in repeated games with incomplete information and signals," Games and Economic Behavior, Elsevier, vol. 47(1), pages 124-156, April.
    17. Rida Laraki & Jérôme Renault, 2020. "Acyclic Gambling Games," Mathematics of Operations Research, INFORMS, vol. 45(4), pages 1237-1257, November.
    18. Cheng, Jianqiang & Leung, Janny & Lisser, Abdel, 2016. "Random-payoff two-person zero-sum game with joint chance constraints," European Journal of Operational Research, Elsevier, vol. 252(1), pages 213-219.
    19. Frédéric Koessler & Françoise Forges, 2008. "Multistage Communication With And Without Verifiable Types," International Game Theory Review (IGTR), World Scientific Publishing Co. Pte. Ltd., vol. 10(02), pages 145-164.
    20. Salomon, Antoine & Forges, Françoise, 2015. "Bayesian repeated games and reputation," Journal of Economic Theory, Elsevier, vol. 159(PA), pages 70-104.

    More about this item

    Keywords

    Jointly controlled lotteries; Biased coin; Quitting games; Undiscounted equilibrium; Uniform equilibrium;
    All these keywords.

    JEL classification:

    • C65 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Miscellaneous Mathematical Tools
    • C72 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Noncooperative Games
    • C73 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Stochastic and Dynamic Games; Evolutionary Games

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:gamebe:v:119:y:2020:i:c:p:383-391. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/622836 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.