IDEAS home Printed from https://ideas.repec.org/a/eee/gamebe/v104y2017icp563-567.html
   My bibliography  Save this article

Every random choice rule is backwards-induction rationalizable

Author

Listed:
  • Li, Jiangtao
  • Tang, Rui

Abstract

Motivated by the literature on random choice and in particular the random utility models, we extend the analysis in Bossert and Sprumont (2013) to include the possibility that players exhibit stochastic preferences over alternatives. We prove that every random choice rule is backwards-induction rationalizable.

Suggested Citation

  • Li, Jiangtao & Tang, Rui, 2017. "Every random choice rule is backwards-induction rationalizable," Games and Economic Behavior, Elsevier, vol. 104(C), pages 563-567.
  • Handle: RePEc:eee:gamebe:v:104:y:2017:i:c:p:563-567
    DOI: 10.1016/j.geb.2017.06.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S089982561730101X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.geb.2017.06.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Walter Bossert & Yves Sprumont, 2013. "Every Choice Function Is Backwards‐Induction Rationalizable," Econometrica, Econometric Society, vol. 81(6), pages 2521-2534, November.
    2. Ray, Indrajit & Zhou, Lin, 2001. "Game Theory via Revealed Preferences," Games and Economic Behavior, Elsevier, vol. 37(2), pages 415-424, November.
    3. Ray, Indrajit & Snyder, Susan, 2013. "Observable implications of Nash and subgame-perfect behavior in extensive games," Journal of Mathematical Economics, Elsevier, vol. 49(6), pages 471-477.
    4. Xu, Yongsheng & Zhou, Lin, 2007. "Rationalizability of choice functions by game trees," Journal of Economic Theory, Elsevier, vol. 134(1), pages 548-556, May.
    5. Adam Galambos, 2005. "Revealed Preference in Game Theory," 2005 Meeting Papers 776, Society for Economic Dynamics.
    6. Daniel McFadden, 2001. "Economic Choices," American Economic Review, American Economic Association, vol. 91(3), pages 351-378, June.
    7. Sprumont, Yves, 2000. "On the Testable Implications of Collective Choice Theories," Journal of Economic Theory, Elsevier, vol. 93(2), pages 205-232, August.
    8. Paola Manzini & Marco Mariotti & Luigi Mittone, 2010. "Choosing monetary sequences: theory and experimental evidence," Theory and Decision, Springer, vol. 69(3), pages 327-354, September.
    9. Ray, Indrajit & Snyder, Susan, 2013. "Observable implications of Nash and subgame-perfect behavior in extensive games," Journal of Mathematical Economics, Elsevier, vol. 49(6), pages 471-477.
    10. Sippel, Reinhard, 1997. "An Experiment on the Pure Theory of Consumer's Behaviour," Economic Journal, Royal Economic Society, vol. 107(444), pages 1431-1444, September.
    11. Rehbeck, John, 2014. "Every choice correspondence is backwards-induction rationalizable," Games and Economic Behavior, Elsevier, vol. 88(C), pages 207-210.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bhattacharya, Mihir & Mukherjee, Saptarshi & Sonal, Ruhi, 2021. "Frame-based stochastic choice rule," Journal of Mathematical Economics, Elsevier, vol. 97(C).
    2. Yi-Chun Chen & Velibor V. Mišić, 2022. "Decision Forest: A Nonparametric Approach to Modeling Irrational Choice," Management Science, INFORMS, vol. 68(10), pages 7090-7111, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lee, Byung Soo & Stewart, Colin, 2016. "Identification of payoffs in repeated games," Games and Economic Behavior, Elsevier, vol. 99(C), pages 82-88.
    2. Rehbeck, John, 2014. "Every choice correspondence is backwards-induction rationalizable," Games and Economic Behavior, Elsevier, vol. 88(C), pages 207-210.
    3. Walter Bossert & Yves Sprumont, 2013. "Every Choice Function Is Backwards‐Induction Rationalizable," Econometrica, Econometric Society, vol. 81(6), pages 2521-2534, November.
    4. Ray, Indrajit & Snyder, Susan, 2013. "Observable implications of Nash and subgame-perfect behavior in extensive games," Journal of Mathematical Economics, Elsevier, vol. 49(6), pages 471-477.
    5. Ray, Indrajit & Snyder, Susan, 2013. "Observable implications of Nash and subgame-perfect behavior in extensive games," Journal of Mathematical Economics, Elsevier, vol. 49(6), pages 471-477.
    6. Freer, Mikhail & Martinelli, César, 2021. "A utility representation theorem for general revealed preference," Mathematical Social Sciences, Elsevier, vol. 111(C), pages 68-76.
    7. Nishimura, Hiroki, 2021. "Revealed preferences of individual players in sequential games," Journal of Mathematical Economics, Elsevier, vol. 96(C).
    8. Thomas Demuynck, 2014. "The computational complexity of rationalizing Pareto optimal choice behavior," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 42(3), pages 529-549, March.
    9. Pierre-André Chiappori & Olivier Donni, 2005. "Learning From a Piece of Pie: The Empirical Content of Nash Bargaining," THEMA Working Papers 2006-07, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.
    10. Demuynck, Thomas, 2011. "The computational complexity of rationalizing boundedly rational choice behavior," Journal of Mathematical Economics, Elsevier, vol. 47(4-5), pages 425-433.
    11. Federico Echenique & Gerelt Tserenjigmid, 2023. "Revealed preferences for dynamically inconsistent models," Papers 2305.14125, arXiv.org, revised Jul 2023.
    12. Demuynck, Thomas & Lauwers, Luc, 2009. "Nash rationalization of collective choice over lotteries," Mathematical Social Sciences, Elsevier, vol. 57(1), pages 1-15, January.
    13. Lee, SangMok, 2012. "The testable implications of zero-sum games," Journal of Mathematical Economics, Elsevier, vol. 48(1), pages 39-46.
    14. BOSSERT, Walter & SUZUMURA, Kotaro, 2006. "Non-Deteriorating Choice without Full Transitivity," Cahiers de recherche 10-2006, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
    15. Anis Hoayek & Hassan Hamie & Hans Auer, 2020. "Modeling the Price Stability and Predictability of Post Liberalized Gas Markets Using the Theory of Information," Energies, MDPI, vol. 13(11), pages 1-20, June.
    16. Carvajal, Andres & Ray, Indrajit & Snyder, Susan, 2004. "Equilibrium behavior in markets and games: testable restrictions and identification," Journal of Mathematical Economics, Elsevier, vol. 40(1-2), pages 1-40, February.
    17. Carvajal, Andres & Quah, John K.-H., 2009. "A Nonparametric Analysis of the Cournot Model," The Warwick Economics Research Paper Series (TWERPS) 922, University of Warwick, Department of Economics.
    18. Cherchye, L.J.H. & Demuynck, T. & de Rock, B., 2009. "Degrees of Cooperation in Household Consumption Models : A Revealed Preference Analysis," Other publications TiSEM 097597d5-7724-4d31-b044-e, Tilburg University, School of Economics and Management.
    19. Hassan Hamie & Anis Hoayek & Hans Auer, 2020. "Modeling Post-Liberalized European Gas Market Concentration—A Game Theory Perspective," Forecasting, MDPI, vol. 3(1), pages 1-16, December.
    20. Ehlers, Lars & Sprumont, Yves, 2008. "Weakened WARP and top-cycle choice rules," Journal of Mathematical Economics, Elsevier, vol. 44(1), pages 87-94, January.

    More about this item

    Keywords

    Revealed preference; Backwards-induction; Rationalizability; Random choice; Stochastic preference;
    All these keywords.

    JEL classification:

    • C72 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Noncooperative Games
    • D70 - Microeconomics - - Analysis of Collective Decision-Making - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:gamebe:v:104:y:2017:i:c:p:563-567. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/622836 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.