IDEAS home Printed from https://ideas.repec.org/a/eee/gamebe/v103y2017icp41-66.html
   My bibliography  Save this article

On the robustness of learning in games with stochastically perturbed payoff observations

Author

Listed:
  • Bravo, Mario
  • Mertikopoulos, Panayotis

Abstract

Motivated by the scarcity of accurate payoff feedback in practical applications of game theory, we examine a class of learning dynamics where players adjust their choices based on past payoff observations that are subject to noise and random disturbances. First, in the single-player case (corresponding to an agent trying to adapt to an arbitrarily changing environment), we show that the stochastic dynamics under study lead to no regret almost surely, irrespective of the noise level in the player's observations. In the multi-player case, we find that dominated strategies become extinct and we show that strict Nash equilibria are stochastically stable and attracting; conversely, if a state is stable or attracting with positive probability, then it is a Nash equilibrium. Finally, we provide an averaging principle for 2-player games, and we show that in zero-sum games with an interior equilibrium, time averages converge to Nash equilibrium for any noise level.

Suggested Citation

  • Bravo, Mario & Mertikopoulos, Panayotis, 2017. "On the robustness of learning in games with stochastically perturbed payoff observations," Games and Economic Behavior, Elsevier, vol. 103(C), pages 41-66.
  • Handle: RePEc:eee:gamebe:v:103:y:2017:i:c:p:41-66
    DOI: 10.1016/j.geb.2016.06.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S089982561630046X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.geb.2016.06.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Erev, Ido & Roth, Alvin E, 1998. "Predicting How People Play Games: Reinforcement Learning in Experimental Games with Unique, Mixed Strategy Equilibria," American Economic Review, American Economic Association, vol. 88(4), pages 848-881, September.
    2. Cominetti, Roberto & Melo, Emerson & Sorin, Sylvain, 2010. "A payoff-based learning procedure and its application to traffic games," Games and Economic Behavior, Elsevier, vol. 70(1), pages 71-83, September.
    3. Ed Hopkins, 2002. "Two Competing Models of How People Learn in Games," Econometrica, Econometric Society, vol. 70(6), pages 2141-2166, November.
    4. Rustichini, Aldo, 1999. "Optimal Properties of Stimulus--Response Learning Models," Games and Economic Behavior, Elsevier, vol. 29(1-2), pages 244-273, October.
    5. Michel Benaim & Josef Hofbauer & Sylvain Sorin, 2005. "Stochastic Approximations and Differential Inclusions II: Applications," Levine's Bibliography 784828000000000098, UCLA Department of Economics.
    6. Friedman, Daniel, 1991. "Evolutionary Games in Economics," Econometrica, Econometric Society, vol. 59(3), pages 637-666, May.
    7. Panayotis Mertikopoulos & William H. Sandholm, 2016. "Learning in Games via Reinforcement and Regularization," Mathematics of Operations Research, INFORMS, vol. 41(4), pages 1297-1324, November.
    8. Borgers, Tilman & Sarin, Rajiv, 1997. "Learning Through Reinforcement and Replicator Dynamics," Journal of Economic Theory, Elsevier, vol. 77(1), pages 1-14, November.
    9. Michel Benaïm & Josef Hofbauer & Sylvain Sorin, 2005. "Stochastic Approximations and Differential Inclusions; Part II: Applications," Working Papers hal-00242974, HAL.
    10. Anna Nagurney & Ding Zhang, 1997. "Projected Dynamical Systems in the Formulation, Stability Analysis, and Computation of Fixed-Demand Traffic Network Equilibria," Transportation Science, INFORMS, vol. 31(2), pages 147-158, May.
    11. Cabrales, Antonio, 2000. "Stochastic Replicator Dynamics," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 41(2), pages 451-481, May.
    12. Lahkar, Ratul & Sandholm, William H., 2008. "The projection dynamic and the geometry of population games," Games and Economic Behavior, Elsevier, vol. 64(2), pages 565-590, November.
    13. Michel Benaïm & Mathieu Faure, 2013. "Consistency of Vanishingly Smooth Fictitious Play," Mathematics of Operations Research, INFORMS, vol. 38(3), pages 437-450, August.
    14. Samuelson, Larry & Zhang, Jianbo, 1992. "Evolutionary stability in asymmetric games," Journal of Economic Theory, Elsevier, vol. 57(2), pages 363-391, August.
    15. Drew Fudenberg & David K. Levine, 1998. "The Theory of Learning in Games," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262061945, April.
    16. Nachbar, J H, 1990. ""Evolutionary" Selection Dynamics in Games: Convergence and Limit Properties," International Journal of Game Theory, Springer;Game Theory Society, vol. 19(1), pages 59-89.
    17. Oyarzun, Carlos & Ruf, Johannes, 2014. "Convergence in models with bounded expected relative hazard rates," Journal of Economic Theory, Elsevier, vol. 154(C), pages 229-244.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Li & Xu, Zichun & Wang, Hui, 2020. "Stochastically perturbed payoff observations in an evolutionary game," Economics Letters, Elsevier, vol. 192(C).
    2. Mertikopoulos, Panayotis & Sandholm, William H., 2018. "Riemannian game dynamics," Journal of Economic Theory, Elsevier, vol. 177(C), pages 315-364.
    3. Saeed Hadikhanloo & Rida Laraki & Panayotis Mertikopoulos & Sylvain Sorin, 2022. "Learning in nonatomic games, part Ⅰ: Finite action spaces and population games," Post-Print hal-03767995, HAL.
    4. Masiliūnas, Aidas, 2023. "Learning in rent-seeking contests with payoff risk and foregone payoff information," Games and Economic Behavior, Elsevier, vol. 140(C), pages 50-72.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Panayotis Mertikopoulos & William H. Sandholm, 2016. "Learning in Games via Reinforcement and Regularization," Mathematics of Operations Research, INFORMS, vol. 41(4), pages 1297-1324, November.
    2. Jonathan Newton, 2018. "Evolutionary Game Theory: A Renaissance," Games, MDPI, vol. 9(2), pages 1-67, May.
    3. Sandholm, William H., 2015. "Population Games and Deterministic Evolutionary Dynamics," Handbook of Game Theory with Economic Applications,, Elsevier.
    4. Mertikopoulos, Panayotis & Sandholm, William H., 2018. "Riemannian game dynamics," Journal of Economic Theory, Elsevier, vol. 177(C), pages 315-364.
    5. Saeed Hadikhanloo & Rida Laraki & Panayotis Mertikopoulos & Sylvain Sorin, 2022. "Learning in nonatomic games, part Ⅰ: Finite action spaces and population games," Post-Print hal-03767995, HAL.
    6. Fabrizio Germano, 2007. "Stochastic Evolution of Rules for Playing Finite Normal Form Games," Theory and Decision, Springer, vol. 62(4), pages 311-333, May.
    7. Pierre Coucheney & Bruno Gaujal & Panayotis Mertikopoulos, 2015. "Penalty-Regulated Dynamics and Robust Learning Procedures in Games," Mathematics of Operations Research, INFORMS, vol. 40(3), pages 611-633, March.
    8. Reinoud Joosten, 2009. "Paul Samuelson's critique and equilibrium concepts in evolutionary game theory," Papers on Economics and Evolution 2009-16, Philipps University Marburg, Department of Geography.
    9. Ianni, A., 2002. "Reinforcement learning and the power law of practice: some analytical results," Discussion Paper Series In Economics And Econometrics 203, Economics Division, School of Social Sciences, University of Southampton.
    10. Benaïm, Michel & Hofbauer, Josef & Hopkins, Ed, 2009. "Learning in games with unstable equilibria," Journal of Economic Theory, Elsevier, vol. 144(4), pages 1694-1709, July.
    11. Tsakas, Elias & Voorneveld, Mark, 2009. "The target projection dynamic," Games and Economic Behavior, Elsevier, vol. 67(2), pages 708-719, November.
    12. Demichelis, Stefano & Ritzberger, Klaus, 2003. "From evolutionary to strategic stability," Journal of Economic Theory, Elsevier, vol. 113(1), pages 51-75, November.
    13. Cason, Timothy N. & Friedman, Daniel & Hopkins, Ed, 2010. "Testing the TASP: An experimental investigation of learning in games with unstable equilibria," Journal of Economic Theory, Elsevier, vol. 145(6), pages 2309-2331, November.
    14. Funai, Naoki, 2022. "Reinforcement learning with foregone payoff information in normal form games," Journal of Economic Behavior & Organization, Elsevier, vol. 200(C), pages 638-660.
    15. Beggs, A.W., 2005. "On the convergence of reinforcement learning," Journal of Economic Theory, Elsevier, vol. 122(1), pages 1-36, May.
    16. Bernergård, Axel & Mohlin, Erik, 2019. "Evolutionary selection against iteratively weakly dominated strategies," Games and Economic Behavior, Elsevier, vol. 117(C), pages 82-97.
    17. Sylvain Sorin, 2023. "Continuous Time Learning Algorithms in Optimization and Game Theory," Dynamic Games and Applications, Springer, vol. 13(1), pages 3-24, March.
    18. Reinoud Joosten & Berend Roorda, 2008. "Generalized projection dynamics in evolutionary game theory," Papers on Economics and Evolution 2008-11, Philipps University Marburg, Department of Geography.
    19. Jakub Bielawski & Thiparat Chotibut & Fryderyk Falniowski & Michal Misiurewicz & Georgios Piliouras, 2022. "Unpredictable dynamics in congestion games: memory loss can prevent chaos," Papers 2201.10992, arXiv.org, revised Jan 2022.
    20. Pangallo, Marco & Sanders, James B.T. & Galla, Tobias & Farmer, J. Doyne, 2022. "Towards a taxonomy of learning dynamics in 2 × 2 games," Games and Economic Behavior, Elsevier, vol. 132(C), pages 1-21.

    More about this item

    Keywords

    Dominated strategies; Learning; Nash equilibrium; Regret minimization; Regularization; Robustness; Stochastic game dynamics; Stochastic stability;
    All these keywords.

    JEL classification:

    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • C72 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Noncooperative Games
    • C73 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Stochastic and Dynamic Games; Evolutionary Games

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:gamebe:v:103:y:2017:i:c:p:41-66. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/622836 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.