IDEAS home Printed from https://ideas.repec.org/a/eee/forpol/v134y2022ics1389934121002306.html
   My bibliography  Save this article

Using machine learning to identify incentives in forestry policy: Towards a new paradigm in policy analysis

Author

Listed:
  • Firebanks-Quevedo, Daniel
  • Planas, Jordi
  • Buckingham, Kathleen
  • Taylor, Cristina
  • Silva, David
  • Naydenova, Galina
  • Zamora-Cristales, René

Abstract

As 2021 saw the launch of the United Nations Decade on Ecosystem Restoration, it highlighted the need to prepare for success over the decade and to understand what public economic and financial incentives exist to support sustainable forest and landscape restoration. To date, Initiative 20 × 20, a coalition of 18 Latin American countries, has committed to place 50 million hectares under restoration and conservation by 2030. Understanding the public policies in these countries that turn those commitments into action, however, is very labor-intensive, requiring decision makers to read and analyze thousands of pages of documents that span multiple sectors, ministries, and scales that lie outside of their areas of expertise. To address this, we developed a semi-automated policy analysis tool that uses state-of-the-art Natural Language Processing (NLP) methods to mine policy documents, assist the labeling process carried out by policy experts, automatically identify policies that contain incentives and classify them by incentive instrument from the following categories: direct payments, fines, credit, tax deduction, technical assistance and supplies. Our best model achieves an F1 score of 93–94% in both identifying an incentive and its policy instrument, as well as an accuracy of above 90% for 5 out of 6 policy instruments, reducing multiple weeks of policy analysis work to a matter of minutes. In particular, the model properly identified the relative frequency of credits, direct payments, and fines that exist as the primary policy instruments in these countries. We also found that tax deductions, supplies, and technical assistance are much less used among most of the countries and that, oftentimes, the policy documents describe economic incentives for restoration in vague and intangible terms. In addition, our model is designed to constantly improve its performance with more data and feedback from policy experts. Furthermore, while our experiments were run on Spanish policy documents, we designed our framework to be widely scalable to policies from different countries and multiple languages, limited only by the number of languages supported by current multilingual NLP models. Using a standardized approach to generate incentives data could provide an evidence-based and transparent system to find complementarity between policies and help remove barriers for implementers and policymakers and enable a more informed decision-making process.

Suggested Citation

  • Firebanks-Quevedo, Daniel & Planas, Jordi & Buckingham, Kathleen & Taylor, Cristina & Silva, David & Naydenova, Galina & Zamora-Cristales, René, 2022. "Using machine learning to identify incentives in forestry policy: Towards a new paradigm in policy analysis," Forest Policy and Economics, Elsevier, vol. 134(C).
  • Handle: RePEc:eee:forpol:v:134:y:2022:i:c:s1389934121002306
    DOI: 10.1016/j.forpol.2021.102624
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1389934121002306
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.forpol.2021.102624?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Grimmer, Justin & Stewart, Brandon M., 2013. "Text as Data: The Promise and Pitfalls of Automatic Content Analysis Methods for Political Texts," Political Analysis, Cambridge University Press, vol. 21(3), pages 267-297, July.
    2. Elomina, Jerbelle & Pülzl, Helga, 2021. "How are forests framed? An analysis of EU forest policy," Forest Policy and Economics, Elsevier, vol. 127(C).
    3. Michael Howlett & M. Ramesh, 1993. "Patterns of Policy Instrument Choice: Policy Styles, Policy Learning and the Privatization Experience," Review of Policy Research, Policy Studies Organization, vol. 12(1‐2), pages 3-24, March.
    4. Nicolena vonHedemann, 2020. "Transitions in Payments for Ecosystem Services in Guatemala: Embedding Forestry Incentives into Rural Development Value Systems," Development and Change, International Institute of Social Studies, vol. 51(1), pages 117-143, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Patricia Schwartz & Adriana A. Zuniga-Teran & Francisco Lara-Valencia & Hilda García-Pérez & Gabriel Díaz Montemayor & Claudia Gil Anaya & Joaquin Marruffo & Oscar A. Rodriguez Ponce & Zoe Holtzman, 2023. "Pathways to Greening Border Cities: A Policy Analysis for Green Infrastructure in Ambos Nogales," Land, MDPI, vol. 12(4), pages 1-21, March.
    2. Young Song, Annie & Lee, Seunghyeon & Wong, S.C., 2023. "A machine learning approach to analyzing spatiotemporal impacts of mobility restriction policies on infection rates," Transportation Research Part A: Policy and Practice, Elsevier, vol. 176(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bernhardt, Lea & Dewenter, Ralf & Thomas, Tobias, 2023. "Measuring partisan media bias in US newscasts from 2001 to 2012," European Journal of Political Economy, Elsevier, vol. 78(C).
    2. Rauh, Christian, 2015. "Communicating supranational governance? The salience of EU affairs in the German Bundestag, 1991–2013," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 16(1), pages 116-138.
    3. Julia Seiermann, 2018. "Only Words? How Power in Trade Agreement Texts Affects International Trade Flows," UNCTAD Blue Series Papers 80, United Nations Conference on Trade and Development.
    4. Arthur Dyevre & Nicolas Lampach, 2021. "Issue attention on international courts: Evidence from the European Court of Justice," The Review of International Organizations, Springer, vol. 16(4), pages 793-815, October.
    5. Dewenter, Ralf & Dulleck, Uwe & Thomas, Tobias, 2018. "The political coverage index and its application to government capture," Research Papers 6, EcoAustria – Institute for Economic Research.
    6. Pastwa, Anna M. & Shrestha, Prabal & Thewissen, James & Torsin, Wouter, 2021. "Unpacking the black box of ICO white papers: a topic modeling approach," LIDAM Discussion Papers LFIN 2021018, Université catholique de Louvain, Louvain Finance (LFIN).
    7. Maksym Polyakov & Morteza Chalak & Md. Sayed Iftekhar & Ram Pandit & Sorada Tapsuwan & Fan Zhang & Chunbo Ma, 2018. "Authorship, Collaboration, Topics, and Research Gaps in Environmental and Resource Economics 1991–2015," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 71(1), pages 217-239, September.
    8. Milena Djourelova & Ruben Durante, 2019. "Media attention and strategic timing in politics: Evidence from U.S. presidential executive orders," Economics Working Papers 1675, Department of Economics and Business, Universitat Pompeu Fabra.
    9. Mohamed M. Mostafa, 2023. "A one-hundred-year structural topic modeling analysis of the knowledge structure of international management research," Quality & Quantity: International Journal of Methodology, Springer, vol. 57(4), pages 3905-3935, August.
    10. Erkan Işığıçok & Sadullah Çelik & Dilek Özdemir Yılmaz, 2023. "Analysis of Skills and Qualifications Required in Data Scientist Job Postings Based on the Pareto Analysis Perspective Using Text Mining," EKOIST Journal of Econometrics and Statistics, Istanbul University, Faculty of Economics, vol. 0(39), pages 10-25, December.
    11. Yuting Chen & Don Bredin & Valerio Potì & Roman Matkovskyy, 2022. "COVID risk narratives: a computational linguistic approach to the econometric identification of narrative risk during a pandemic," Digital Finance, Springer, vol. 4(1), pages 17-61, March.
    12. Purwoko Haryadi Santoso & Edi Istiyono & Haryanto & Wahyu Hidayatulloh, 2022. "Thematic Analysis of Indonesian Physics Education Research Literature Using Machine Learning," Data, MDPI, vol. 7(11), pages 1-41, October.
    13. Markus Eberhardt & Giovanni Facchini & Valeria Rueda, 2023. "Gender Differences in Reference Letters: Evidence from the Economics Job Market," The Economic Journal, Royal Economic Society, vol. 133(655), pages 2676-2708.
    14. Rauh, Christian, 2018. "Validating a sentiment dictionary for German political language—a workbench note," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 15(4), pages 319-343.
    15. Ferrara, Federico M. & Masciandaro, Donato & Moschella, Manuela & Romelli, Davide, 2022. "Political voice on monetary policy: Evidence from the parliamentary hearings of the European Central Bank," European Journal of Political Economy, Elsevier, vol. 74(C).
    16. James Evans, 2022. "From Text Signals to Simulations: A Review and Complement to Text as Data by Grimmer, Roberts & Stewart (PUP 2022)," Sociological Methods & Research, , vol. 51(4), pages 1868-1885, November.
    17. Giliberto Capano & Benedetto Lepori, 2024. "Designing policies that could work: understanding the interaction between policy design spaces and organizational responses in public sector," Policy Sciences, Springer;Society of Policy Sciences, vol. 57(1), pages 53-82, March.
    18. Camilla Salvatore & Silvia Biffignandi & Annamaria Bianchi, 2022. "Corporate Social Responsibility Activities Through Twitter: From Topic Model Analysis to Indexes Measuring Communication Characteristics," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 164(3), pages 1217-1248, December.
    19. Jason Anastasopoulos & George J. Borjas & Gavin G. Cook & Michael Lachanski, 2018. "Job Vacancies, the Beveridge Curve, and Supply Shocks: The Frequency and Content of Help-Wanted Ads in Pre- and Post-Mariel Miami," NBER Working Papers 24580, National Bureau of Economic Research, Inc.
    20. Yang Bao & Anindya Datta, 2014. "Simultaneously Discovering and Quantifying Risk Types from Textual Risk Disclosures," Management Science, INFORMS, vol. 60(6), pages 1371-1391, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:forpol:v:134:y:2022:i:c:s1389934121002306. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/forpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.