IDEAS home Printed from https://ideas.repec.org/a/eee/finlet/v70y2024ics1544612324013692.html
   My bibliography  Save this article

Hedging downside risk in agricultural commodities: A novel nonparametric kernel method

Author

Listed:
  • Jiang, Qi
  • Fan, Yawen

Abstract

Using a nonparametric kernel method, this paper develops a weighted conditional value-at-risk hedge model to hedge downside risks in agricultural commodities. The model exhibits convexity, ensuring the acquisition of its global optimal solution. Simulations show that the nonparametric kernel method enhances the accuracy of the weighted conditional value-at-risk and hedge ratio determination, outperforming traditional estimation methods. Using major agricultural commodities, empirical evidence shows the superiority of the proposed model in reducing downside risks, compared to the minimum variance, minimum value-at-risk, and minimum conditional value-at-risk hedge models.

Suggested Citation

  • Jiang, Qi & Fan, Yawen, 2024. "Hedging downside risk in agricultural commodities: A novel nonparametric kernel method," Finance Research Letters, Elsevier, vol. 70(C).
  • Handle: RePEc:eee:finlet:v:70:y:2024:i:c:s1544612324013692
    DOI: 10.1016/j.frl.2024.106340
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1544612324013692
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.frl.2024.106340?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Robert F Engle & Stefano Giglio & Bryan Kelly & Heebum Lee & Johannes Stroebel, 2020. "Hedging Climate Change News," The Review of Financial Studies, Society for Financial Studies, vol. 33(3), pages 1184-1216.
    2. Shangmei Zhao & Qing Lu & Liyan Han & Yong Liu & Fei Hu, 2015. "A mean-CVaR-skewness portfolio optimization model based on asymmetric Laplace distribution," Annals of Operations Research, Springer, vol. 226(1), pages 727-739, March.
    3. Meng, Xiaochun & Taylor, James W., 2018. "An approximate long-memory range-based approach for value at risk estimation," International Journal of Forecasting, Elsevier, vol. 34(3), pages 377-388.
    4. Banerjee, Ameet Kumar & Akhtaruzzaman, Md & Sensoy, Ahmet & Goodell, John W., 2024. "Volatility spillovers and hedging strategies between impact investing and agricultural commodities," International Review of Financial Analysis, Elsevier, vol. 94(C).
    5. Liu, Guangqiang & Luo, Keyu & Xu, Pengfei & Zhang, Simeng, 2023. "Climate policy uncertainty and its impact on major grain futures," Finance Research Letters, Elsevier, vol. 58(PB).
    6. Julien Boulange & Naota Hanasaki & Dai Yamazaki & Yadu Pokhrel, 2021. "Role of dams in reducing global flood exposure under climate change," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    7. O. Scaillet, 2004. "Nonparametric Estimation and Sensitivity Analysis of Expected Shortfall," Mathematical Finance, Wiley Blackwell, vol. 14(1), pages 115-129, January.
    8. Renata Mansini & Włodzimierz Ogryczak & M. Speranza, 2007. "Conditional value at risk and related linear programming models for portfolio optimization," Annals of Operations Research, Springer, vol. 152(1), pages 227-256, July.
    9. Gianfranco Guastaroba & Renata Mansini & Wlodzimierz Ogryczak & M. Grazia Speranza, 2020. "Enhanced index tracking with CVaR-based ratio measures," Annals of Operations Research, Springer, vol. 292(2), pages 883-931, September.
    10. Chai, Shanglei & Zhou, P., 2018. "The Minimum-CVaR strategy with semi-parametric estimation in carbon market hedging problems," Energy Economics, Elsevier, vol. 76(C), pages 64-75.
    11. Chen, Yi-Ting & Ho, Keng-Yu & Tzeng, Larry Y., 2014. "Riskiness-minimizing spot-futures hedge ratio," Journal of Banking & Finance, Elsevier, vol. 40(C), pages 154-164.
    12. Xueting Cui & Xiaoling Sun & Shushang Zhu & Rujun Jiang & Duan Li, 2018. "Portfolio Optimization with Nonparametric Value at Risk: A Block Coordinate Descent Method," INFORMS Journal on Computing, INFORMS, vol. 30(3), pages 454-471, August.
    13. Zhanyong Zou & Chuang Ouyang & Xing Li, 2024. "Uncertainty impacts on China’s agricultural commodity futures: a quantile perspective," Applied Economics, Taylor & Francis Journals, vol. 56(42), pages 5090-5106, September.
    14. Ruchika Sehgal & Aparna Mehra, 2019. "Enhanced indexing using weighted conditional value at risk," Annals of Operations Research, Springer, vol. 280(1), pages 211-240, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Jinbo & Ding, Ashley & Li, Yong & Lu, Dong, 2020. "Increasing the risk management effectiveness from higher accuracy: A novel non-parametric method," Pacific-Basin Finance Journal, Elsevier, vol. 62(C).
    2. Liu, Yong-Jun & Yang, Guo-Sen & Zhang, Wei-Guo, 2024. "A novel regret-rejoice cross-efficiency approach for energy stock portfolio optimization," Omega, Elsevier, vol. 126(C).
    3. Sehgal, Ruchika & Sharma, Amita & Mansini, Renata, 2023. "Worst-case analysis of Omega-VaR ratio optimization model," Omega, Elsevier, vol. 114(C).
    4. Chen, Zhonglu & Zhang, Li & Weng, Chen, 2023. "Does climate policy uncertainty affect Chinese stock market volatility?," International Review of Economics & Finance, Elsevier, vol. 84(C), pages 369-381.
    5. Francesco Cesarone & Raffaello Cesetti & Giuseppe Orlando & Manuel Luis Martino & Jacopo Maria Ricci, 2022. "Comparing SSD-Efficient Portfolios with a Skewed Reference Distribution," Mathematics, MDPI, vol. 11(1), pages 1-20, December.
    6. Amita Sharma & Aparna Mehra, 2017. "Financial analysis based sectoral portfolio optimization under second order stochastic dominance," Annals of Operations Research, Springer, vol. 256(1), pages 171-197, September.
    7. Ruchika Sehgal & Aparna Mehra, 2023. "Quantile Regression Based Enhanced Indexing with Portfolio Rebalancing," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 21(3), pages 721-742, September.
    8. Boguk Kim & Chulwoo Han & Frank Chongwoo Park, 2014. "Optimising Credit Portfolio Using a Quadratic Nonlinear Projection Method," Papers 1411.2525, arXiv.org, revised Jul 2016.
    9. Gijbels, Irène & Sznajder, Dominik, 2013. "Testing tail monotonicity by constrained copula estimation," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 338-351.
    10. Malavasi, Matteo & Ortobelli Lozza, Sergio & Trück, Stefan, 2021. "Second order of stochastic dominance efficiency vs mean variance efficiency," European Journal of Operational Research, Elsevier, vol. 290(3), pages 1192-1206.
    11. Giovanni Bonaccolto & Massimiliano Caporin & Sandra Paterlini, 2018. "Asset allocation strategies based on penalized quantile regression," Computational Management Science, Springer, vol. 15(1), pages 1-32, January.
    12. Weth, Mark A. & Baltzer, Markus & Bertram, Christoph & Hilaire, Jérôme & Johnston, Craig, 2024. "The scenario-based equity price impact induced by greenhouse gas emissions," Discussion Papers 30/2024, Deutsche Bundesbank.
    13. Pierre Giot & Sébastien Laurent, 2003. "Value-at-risk for long and short trading positions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(6), pages 641-663.
    14. Oliver Linton & Dajing Shang & Yang Yan, 2012. "Efficient estimation of conditional risk measures in a semiparametric GARCH model," CeMMAP working papers CWP25/12, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    15. Dinesh Roulo & Subbarao Pichuka, 2024. "Assessing the effects of extreme rainfall patterns and their impact on dam safety: a case study on Indian dam failures," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(14), pages 12967-12987, November.
    16. Dissem, Sonia & Lobez, Frederic, 2020. "Correlation between the 2014 EU-wide stress tests and the market-based measures of systemic risk," Research in International Business and Finance, Elsevier, vol. 51(C).
    17. Carmine De Franco & Johann Nicolle & Huyên Pham, 2019. "Dealing with Drift Uncertainty: A Bayesian Learning Approach," Risks, MDPI, vol. 7(1), pages 1-18, January.
    18. Pengcheng Qin & Hongmei Xu & Min Liu & Lüliu Liu & Chan Xiao & Iman Mallakpour & Matin Rahnamay Naeini & Kuolin Hsu & Soroosh Sorooshian, 2022. "Projected impacts of climate change on major dams in the Upper Yangtze River Basin," Climatic Change, Springer, vol. 170(1), pages 1-24, January.
    19. Balbás, Alejandro & Balbás, Beatriz & Heras, Antonio, 2011. "Stable solutions for optimal reinsurance problems involving risk measures," European Journal of Operational Research, Elsevier, vol. 214(3), pages 796-804, November.
    20. Yao, Haixiang & Huang, Jinbo & Li, Yong & Humphrey, Jacquelyn E., 2021. "A general approach to smooth and convex portfolio optimization using lower partial moments," Journal of Banking & Finance, Elsevier, vol. 129(C).

    More about this item

    Keywords

    Downside risk; Weighted conditional value-at-risk; Nonparametric kernel method; Agricultural commodity;
    All these keywords.

    JEL classification:

    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading
    • G15 - Financial Economics - - General Financial Markets - - - International Financial Markets
    • G23 - Financial Economics - - Financial Institutions and Services - - - Non-bank Financial Institutions; Financial Instruments; Institutional Investors

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:finlet:v:70:y:2024:i:c:s1544612324013692. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/frl .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.