IDEAS home Printed from https://ideas.repec.org/a/eee/finlet/v60y2024ics1544612323013247.html
   My bibliography  Save this article

Towards Low-Carbon Agricultural Production: Evidence from China's Main Grain-Producing Areas

Author

Listed:
  • Sui, Jianli
  • Lv, Wenqiang
  • Xie, Huailing
  • Xu, Xiaodong

Abstract

Low-carbon agricultural development is inseparable from the support of green finance. This study utilizes the GDIM model and the ARDL method to examine several key drivers of agricultural carbon emissions in China's main grain-producing areas from 2000 to 2020. The objective is to offer a valuable policy framework for green finance in promoting low-carbon agricultural production. The results indicated that despite being a driving factor in agricultural carbon emissions, the effect of the chemical fertilizer input shifted from rising to falling, and an agriculture-based CO2 EKC was confirmed. Moreover, from the perspective of the causal links between agricultural carbon emissions and their drivers, this study found that chemical fertilizer input had both long- and short-term driving effects, agricultural mechanical application had a long-term inhibiting effect, and the aging of the agricultural labor force had a short-term driving effect. The findings of this paper will help policymakers develop green financial resources to guide capital towards low-carbon agricultural production.

Suggested Citation

  • Sui, Jianli & Lv, Wenqiang & Xie, Huailing & Xu, Xiaodong, 2024. "Towards Low-Carbon Agricultural Production: Evidence from China's Main Grain-Producing Areas," Finance Research Letters, Elsevier, vol. 60(C).
  • Handle: RePEc:eee:finlet:v:60:y:2024:i:c:s1544612323013247
    DOI: 10.1016/j.frl.2023.104952
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1544612323013247
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.frl.2023.104952?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ang, B. W., 2004. "Decomposition analysis for policymaking in energy:: which is the preferred method?," Energy Policy, Elsevier, vol. 32(9), pages 1131-1139, June.
    2. Pata, Ugur Korkut & Caglar, Abdullah Emre, 2021. "Investigating the EKC hypothesis with renewable energy consumption, human capital, globalization and trade openness for China: Evidence from augmented ARDL approach with a structural break," Energy, Elsevier, vol. 216(C).
    3. Vaninsky, Alexander, 2014. "Factorial decomposition of CO2 emissions: A generalized Divisia index approach," Energy Economics, Elsevier, vol. 45(C), pages 389-400.
    4. M. Hashem Pesaran & Yongcheol Shin & Richard J. Smith, 2001. "Bounds testing approaches to the analysis of level relationships," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 16(3), pages 289-326.
    5. Yi Qing & Moyu Chen & Yu Sheng & Jikun Huang, 2019. "Mechanization services, farm productivity and institutional innovation in China," China Agricultural Economic Review, Emerald Group Publishing Limited, vol. 11(3), pages 536-554, June.
    6. Shen, Zhiyang & Wang, Songkai & Boussemart, Jean-Philippe & Hao, Yu, 2022. "Digital transition and green growth in Chinese agriculture," Technological Forecasting and Social Change, Elsevier, vol. 181(C).
    7. Sudeshna Ghosh, 2018. "Carbon Dioxide Emissions, Energy Consumption in Agriculture: A Causality Analysis for India," Arthaniti: Journal of Economic Theory and Practice, , vol. 17(2), pages 183-207, December.
    8. Zhang, Xi & Geng, Yong & Shao, Shuai & Dong, Huijuan & Wu, Rui & Yao, Tianli & Song, Jiekun, 2020. "How to achieve China’s CO2 emission reduction targets by provincial efforts? – An analysis based on generalized Divisia index and dynamic scenario simulation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    9. Yi Qing & Moyu Chen & Yu Sheng & Jikun Huang, 2019. "Mechanization services, farm productivity and institutional innovation in China," China Agricultural Economic Review, Emerald Group Publishing Limited, vol. 11(3), pages 536-554, June.
    10. Liu, Jian & Yang, Qingshan & Ou, Suhua & Liu, Jie, 2022. "Factor decomposition and the decoupling effect of carbon emissions in China's manufacturing high-emission subsectors," Energy, Elsevier, vol. 248(C).
    11. Renzhi, Nuobu & Baek, Yong Jun, 2020. "Can financial inclusion be an effective mitigation measure? evidence from panel data analysis of the environmental Kuznets curve," Finance Research Letters, Elsevier, vol. 37(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Qingjuan & Wang, Qunwei & Zhou, Dequn & Wang, Honggang, 2023. "Drivers and evolution of low-carbon development in China's transportation industry: An integrated analytical approach," Energy, Elsevier, vol. 262(PB).
    2. Wang, Jianda & Dong, Kangyin & Wang, Kun, 2023. "Towards green recovery: Platform economy and its impact on carbon emissions in China," Economic Analysis and Policy, Elsevier, vol. 77(C), pages 969-987.
    3. Liu, Yaping & Sadiq, Farah & Ali, Wajahat & Kumail, Tafazal, 2022. "Does tourism development, energy consumption, trade openness and economic growth matters for ecological footprint: Testing the Environmental Kuznets Curve and pollution haven hypothesis for Pakistan," Energy, Elsevier, vol. 245(C).
    4. Ullah, Sami & Lin, Boqiang, 2024. "Harnessing the synergistic impacts of financial structure, industrialization, and ecological footprint through the lens of the EKC hypothesis. Insights from Pakistan," Energy, Elsevier, vol. 307(C).
    5. Nuno Carlos Leitão, 2021. "Testing the Role of Trade on Carbon Dioxide Emissions in Portugal," Economies, MDPI, vol. 9(1), pages 1-15, February.
    6. Özlem Karadağ Albayrak & Samet Topal & Serhat Çamkaya, 2022. "The Impact of Economic Growth, Renewable Energy, Non-renewable Energy and Trade Openness on the Ecological Footprint and Forecasting in Turkiye: an Case of the ARDL and NMGM Forecasting Model," Alphanumeric Journal, Bahadir Fatih Yildirim, vol. 10(2), pages 139-154, December.
    7. Rita Ariani & Kamal Fachrurrozi & Adhiana Adhiana & Akhmad Baihaqi, 2024. "Agriculture Productivity and Environmental Degradation in Indonesia: A Time Series Analysis," International Journal of Energy Economics and Policy, Econjournals, vol. 14(6), pages 665-674, November.
    8. Raza, Muhammad Yousaf & Lin, Boqiang, 2023. "Future outlook and influencing factors analysis of natural gas consumption in Bangladesh: An economic and policy perspectives," Energy Policy, Elsevier, vol. 173(C).
    9. Muhammad Sohail Amjad Makhdum & Muhammad Usman & Rakhshanda Kousar & Javier Cifuentes-Faura & Magdalena Radulescu & Daniel Balsalobre-Lorente, 2022. "How Do Institutional Quality, Natural Resources, Renewable Energy, and Financial Development Reduce Ecological Footprint without Hindering Economic Growth Trajectory? Evidence from China," Sustainability, MDPI, vol. 14(21), pages 1-25, October.
    10. Udemba, Edmund Ntom & Tosun, Merve, 2022. "Moderating effect of institutional policies on energy and technology towards a better environment quality: A two dimensional approach to China's sustainable development," Technological Forecasting and Social Change, Elsevier, vol. 183(C).
    11. Shigetomi, Yosuke & Matsumoto, Ken'ichi & Ogawa, Yuki & Shiraki, Hiroto & Yamamoto, Yuki & Ochi, Yuki & Ehara, Tomoki, 2018. "Driving forces underlying sub-national carbon dioxide emissions within the household sector and implications for the Paris Agreement targets in Japan," Applied Energy, Elsevier, vol. 228(C), pages 2321-2332.
    12. Pata, Ugur Korkut & Ertugrul, Hasan Murat, 2023. "Do the Kyoto Protocol, geopolitical risks, human capital and natural resources affect the sustainability limit? A new environmental approach based on the LCC hypothesis," Resources Policy, Elsevier, vol. 81(C).
    13. repec:ags:aaea22:335656 is not listed on IDEAS
    14. Danish, & Ulucak, Recep, 2022. "Analyzing energy innovation-emissions nexus in China: A novel dynamic simulation method," Energy, Elsevier, vol. 244(PB).
    15. Lin, Boqiang & Raza, Muhammad Yousaf, 2021. "Analysis of electricity consumption in Pakistan using index decomposition and decoupling approach," Energy, Elsevier, vol. 214(C).
    16. Rahman, Mohammad Mafizur & Alam, Khosrul, 2022. "Impact of industrialization and non-renewable energy on environmental pollution in Australia: Do renewable energy and financial development play a mitigating role?," Renewable Energy, Elsevier, vol. 195(C), pages 203-213.
    17. Viktor Koval & Viktoriia Khaustova & Stella Lippolis & Olha Ilyash & Tetiana Salashenko & Piotr Olczak, 2023. "Fundamental Shifts in the EU’s Electric Power Sector Development: LMDI Decomposition Analysis," Energies, MDPI, vol. 16(14), pages 1-22, July.
    18. Ahakwa, Isaac & Xu, Yi & Tackie, Evelyn Agba, 2023. "Greening human capital towards environmental quality in Ghana: Insight from the novel dynamic ARDL simulation approach," Energy Policy, Elsevier, vol. 176(C).
    19. Feng Dong & Jingyun Li & Yue-Jun Zhang & Ying Wang, 2018. "Drivers Analysis of CO 2 Emissions from the Perspective of Carbon Density: The Case of Shandong Province, China," IJERPH, MDPI, vol. 15(8), pages 1-24, August.
    20. Sushil Gupta & Hossein Rikhtehgar Berenji & Manish Shukla & Nagesh N. Murthy, 2023. "Opportunities in farming research from an operations management perspective," Production and Operations Management, Production and Operations Management Society, vol. 32(6), pages 1577-1596, June.
    21. Zheng, Jiali & Feng, Gengzhong & Ren, Zhuanzhuan & Qi, Nengxi & Coffman, D'Maris & Zhou, Yunlai & Wang, Shouyang, 2022. "China's energy consumption and economic activity at the regional level," Energy, Elsevier, vol. 259(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:finlet:v:60:y:2024:i:c:s1544612323013247. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/frl .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.