IDEAS home Printed from https://ideas.repec.org/a/eee/finlet/v60y2024ics1544612323013247.html
   My bibliography  Save this article

Towards Low-Carbon Agricultural Production: Evidence from China's Main Grain-Producing Areas

Author

Listed:
  • Sui, Jianli
  • Lv, Wenqiang
  • Xie, Huailing
  • Xu, Xiaodong

Abstract

Low-carbon agricultural development is inseparable from the support of green finance. This study utilizes the GDIM model and the ARDL method to examine several key drivers of agricultural carbon emissions in China's main grain-producing areas from 2000 to 2020. The objective is to offer a valuable policy framework for green finance in promoting low-carbon agricultural production. The results indicated that despite being a driving factor in agricultural carbon emissions, the effect of the chemical fertilizer input shifted from rising to falling, and an agriculture-based CO2 EKC was confirmed. Moreover, from the perspective of the causal links between agricultural carbon emissions and their drivers, this study found that chemical fertilizer input had both long- and short-term driving effects, agricultural mechanical application had a long-term inhibiting effect, and the aging of the agricultural labor force had a short-term driving effect. The findings of this paper will help policymakers develop green financial resources to guide capital towards low-carbon agricultural production.

Suggested Citation

  • Sui, Jianli & Lv, Wenqiang & Xie, Huailing & Xu, Xiaodong, 2024. "Towards Low-Carbon Agricultural Production: Evidence from China's Main Grain-Producing Areas," Finance Research Letters, Elsevier, vol. 60(C).
  • Handle: RePEc:eee:finlet:v:60:y:2024:i:c:s1544612323013247
    DOI: 10.1016/j.frl.2023.104952
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1544612323013247
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.frl.2023.104952?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ang, B. W., 2004. "Decomposition analysis for policymaking in energy:: which is the preferred method?," Energy Policy, Elsevier, vol. 32(9), pages 1131-1139, June.
    2. Pata, Ugur Korkut & Caglar, Abdullah Emre, 2021. "Investigating the EKC hypothesis with renewable energy consumption, human capital, globalization and trade openness for China: Evidence from augmented ARDL approach with a structural break," Energy, Elsevier, vol. 216(C).
    3. Vaninsky, Alexander, 2014. "Factorial decomposition of CO2 emissions: A generalized Divisia index approach," Energy Economics, Elsevier, vol. 45(C), pages 389-400.
    4. M. Hashem Pesaran & Yongcheol Shin & Richard J. Smith, 2001. "Bounds testing approaches to the analysis of level relationships," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 16(3), pages 289-326.
    5. Yi Qing & Moyu Chen & Yu Sheng & Jikun Huang, 2019. "Mechanization services, farm productivity and institutional innovation in China," China Agricultural Economic Review, Emerald Group Publishing Limited, vol. 11(3), pages 536-554, June.
    6. Shen, Zhiyang & Wang, Songkai & Boussemart, Jean-Philippe & Hao, Yu, 2022. "Digital transition and green growth in Chinese agriculture," Technological Forecasting and Social Change, Elsevier, vol. 181(C).
    7. Sudeshna Ghosh, 2018. "Carbon Dioxide Emissions, Energy Consumption in Agriculture: A Causality Analysis for India," Arthaniti: Journal of Economic Theory and Practice, , vol. 17(2), pages 183-207, December.
    8. Zhang, Xi & Geng, Yong & Shao, Shuai & Dong, Huijuan & Wu, Rui & Yao, Tianli & Song, Jiekun, 2020. "How to achieve China’s CO2 emission reduction targets by provincial efforts? – An analysis based on generalized Divisia index and dynamic scenario simulation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    9. Yi Qing & Moyu Chen & Yu Sheng & Jikun Huang, 2019. "Mechanization services, farm productivity and institutional innovation in China," China Agricultural Economic Review, Emerald Group Publishing Limited, vol. 11(3), pages 536-554, June.
    10. Liu, Jian & Yang, Qingshan & Ou, Suhua & Liu, Jie, 2022. "Factor decomposition and the decoupling effect of carbon emissions in China's manufacturing high-emission subsectors," Energy, Elsevier, vol. 248(C).
    11. Renzhi, Nuobu & Baek, Yong Jun, 2020. "Can financial inclusion be an effective mitigation measure? evidence from panel data analysis of the environmental Kuznets curve," Finance Research Letters, Elsevier, vol. 37(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Qingjuan & Wang, Qunwei & Zhou, Dequn & Wang, Honggang, 2023. "Drivers and evolution of low-carbon development in China's transportation industry: An integrated analytical approach," Energy, Elsevier, vol. 262(PB).
    2. Wang, Jianda & Dong, Kangyin & Wang, Kun, 2023. "Towards green recovery: Platform economy and its impact on carbon emissions in China," Economic Analysis and Policy, Elsevier, vol. 77(C), pages 969-987.
    3. Liu, Yaping & Sadiq, Farah & Ali, Wajahat & Kumail, Tafazal, 2022. "Does tourism development, energy consumption, trade openness and economic growth matters for ecological footprint: Testing the Environmental Kuznets Curve and pollution haven hypothesis for Pakistan," Energy, Elsevier, vol. 245(C).
    4. Udemba, Edmund Ntom & Tosun, Merve, 2022. "Moderating effect of institutional policies on energy and technology towards a better environment quality: A two dimensional approach to China's sustainable development," Technological Forecasting and Social Change, Elsevier, vol. 183(C).
    5. Shigetomi, Yosuke & Matsumoto, Ken'ichi & Ogawa, Yuki & Shiraki, Hiroto & Yamamoto, Yuki & Ochi, Yuki & Ehara, Tomoki, 2018. "Driving forces underlying sub-national carbon dioxide emissions within the household sector and implications for the Paris Agreement targets in Japan," Applied Energy, Elsevier, vol. 228(C), pages 2321-2332.
    6. repec:ags:aaea22:335656 is not listed on IDEAS
    7. Lin, Boqiang & Raza, Muhammad Yousaf, 2021. "Analysis of electricity consumption in Pakistan using index decomposition and decoupling approach," Energy, Elsevier, vol. 214(C).
    8. Ahakwa, Isaac & Xu, Yi & Tackie, Evelyn Agba, 2023. "Greening human capital towards environmental quality in Ghana: Insight from the novel dynamic ARDL simulation approach," Energy Policy, Elsevier, vol. 176(C).
    9. Zheng, Jiali & Feng, Gengzhong & Ren, Zhuanzhuan & Qi, Nengxi & Coffman, D'Maris & Zhou, Yunlai & Wang, Shouyang, 2022. "China's energy consumption and economic activity at the regional level," Energy, Elsevier, vol. 259(C).
    10. Ha Junsheng & Yuning Mu & Muhammad Mehedi Masud & Rulia Akhtar & Abu Naser Mohammad Saif & K. M. Anwarul Islam & Nusrat Hafiz, 2024. "Navigating the nexus: unraveling technological innovation, economic growth, trade openness, ICT, and CO2 emissions through symmetric and asymmetric analysis," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-13, December.
    11. Muhammet Daştan & Hakan Eygü, 2024. "An empirical investigation of the link between economic growth, unemployment, and ecological footprint in Turkey: Bridging the EKC and EPC hypotheses," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(7), pages 18957-18988, July.
    12. Ousama Ben-Salha & Abdelaziz Hakimi & Taha Zaghdoudi & Hassan Soltani & Mariem Nsaibi, 2022. "Assessing the Impact of Fossil Fuel Prices on Renewable Energy in China Using the Novel Dynamic ARDL Simulations Approach," Sustainability, MDPI, vol. 14(16), pages 1-17, August.
    13. Wang, Ningli & You, Wanhai, 2023. "New insights into the role of global factors in BRICS stock markets: A quantile cointegration approach," Economic Systems, Elsevier, vol. 47(2).
    14. Meng Meng & Leng Yu & Xiaohua Yu, 2024. "Machinery structure, machinery subsidies, and agricultural productivity: Evidence from China," Agricultural Economics, International Association of Agricultural Economists, vol. 55(2), pages 223-246, March.
    15. Zakia Batool & Qurat ul Ain & Abdul Rehman, 2024. "Exploring the effects of farm mechanization, financial development, and renewable energy on China’s food production," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(7), pages 18883-18902, July.
    16. Koçak, Emrah & Önderol, Seyit & Khan, Kamran, 2021. "Structural change, modernization, total factor productivity, and natural resources sustainability: An assessment with quantile and non-quantile estimators," Resources Policy, Elsevier, vol. 74(C).
    17. Hasan, Md. Bokhtiar & Ali, Md. Sumon & Uddin, Gazi Salah & Mahi, Masnun Al & Liu, Yang & Park, Donghyun, 2022. "Is Bangladesh on the right path toward sustainable development? An empirical exploration of energy sources, economic growth, and CO2 discharges nexus," Resources Policy, Elsevier, vol. 79(C).
    18. Zhang, Qianxue & Liao, Hua & Hao, Yu, 2018. "Does one path fit all? An empirical study on the relationship between energy consumption and economic development for individual Chinese provinces," Energy, Elsevier, vol. 150(C), pages 527-543.
    19. Wang, Juan & Li, Ziming & Wu, Tong & Wu, Siyu & Yin, Tingwei, 2022. "The decoupling analysis of CO2 emissions from power generation in Chinese provincial power sector," Energy, Elsevier, vol. 255(C).
    20. Murshed, Muntasir & Ahmed, Rizwan & Khudoykulov, Khurshid & Kumpamool, Chamaiporn & Alrwashdeh, Nusiebeh Nahar Falah & Mahmood, Haider, 2023. "Can enhancing financial inclusivity lower climate risks by inhibiting carbon emissions? Contextual evidence from emerging economies," Research in International Business and Finance, Elsevier, vol. 65(C).
    21. Tanmoy Kumar Ghose & Md Rezanual Islam & Kentaka Aruga & Arifa Jannat & Md. Monirul Islam, 2024. "Disaggregated Impact of Non-Renewable Energy Consumption on the Environmental Sustainability of the United States: A Novel Dynamic ARDL Approach," Sustainability, MDPI, vol. 16(19), pages 1-15, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:finlet:v:60:y:2024:i:c:s1544612323013247. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/frl .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.