IDEAS home Printed from https://ideas.repec.org/a/eee/finlet/v58y2023ipds1544612323010012.html
   My bibliography  Save this article

Do short-term market swings improve realized volatility forecasts?

Author

Listed:
  • Zhang, Junyu
  • Ruan, Xinfeng
  • Zhang, Jin E.

Abstract

CBOE recently introduced a new volatility index, VIX1D. This paper aims to provide a concise evaluation of the effectiveness of this new index that reflects short-term market swings in predicting realized volatility. Similar to VIX, VIX1D exhibits a positive relationship with future realized volatility. When incorporated into HAR-RV, VIX1D demonstrates considerably enhanced predictive capability compared to VIX for one-day ahead predictions, as confirmed by various out-of-sample analyses. Additionally, the predictive capacity of VIX1D diminishes more rapidly compared to that of VIX. These findings validate that short-term swings significantly improve the forecast of short-term realized volatility.

Suggested Citation

  • Zhang, Junyu & Ruan, Xinfeng & Zhang, Jin E., 2023. "Do short-term market swings improve realized volatility forecasts?," Finance Research Letters, Elsevier, vol. 58(PD).
  • Handle: RePEc:eee:finlet:v:58:y:2023:i:pd:s1544612323010012
    DOI: 10.1016/j.frl.2023.104629
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1544612323010012
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.frl.2023.104629?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ivo Welch & Amit Goyal, 2008. "A Comprehensive Look at The Empirical Performance of Equity Premium Prediction," The Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1455-1508, July.
    2. Viktor Todorov & Yang Zhang, 2022. "Information gains from using short‐dated options for measuring and forecasting volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(2), pages 368-391, March.
    3. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    4. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 33(1), pages 125-132.
    5. Baur, Dirk G. & Smales, Lee A., 2020. "Hedging geopolitical risk with precious metals," Journal of Banking & Finance, Elsevier, vol. 117(C).
    6. Bekaert, Geert & Hoerova, Marie, 2014. "The VIX, the variance premium and stock market volatility," Journal of Econometrics, Elsevier, vol. 183(2), pages 181-192.
    7. Torben G. Andersen & Nicola Fusari & Viktor Todorov, 2017. "Short-Term Market Risks Implied by Weekly Options," Journal of Finance, American Finance Association, vol. 72(3), pages 1335-1386, June.
    8. Lars A. Lochstoer & Tyler Muir, 2022. "Volatility Expectations and Returns," Journal of Finance, American Finance Association, vol. 77(2), pages 1055-1096, April.
    9. Clark, Todd E. & West, Kenneth D., 2007. "Approximately normal tests for equal predictive accuracy in nested models," Journal of Econometrics, Elsevier, vol. 138(1), pages 291-311, May.
    10. Fulvio Corsi, 2009. "A Simple Approximate Long-Memory Model of Realized Volatility," Journal of Financial Econometrics, Oxford University Press, vol. 7(2), pages 174-196, Spring.
    11. Oikonomou, Ioannis & Stancu, Andrei & Symeonidis, Lazaros & Wese Simen, Chardin, 2019. "The information content of short-term options," Journal of Financial Markets, Elsevier, vol. 46(C).
    12. Ma, Feng & Wang, Jiqian & Wahab, M.I.M. & Ma, Yuanhui, 2023. "Stock market volatility predictability in a data-rich world: A new insight," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1804-1819.
    13. Chao Liang & Yu Wei & Yaojie Zhang, 2020. "Is implied volatility more informative for forecasting realized volatility: An international perspective," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(8), pages 1253-1276, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Albers, Stefan & Kestner, Lars N., 2024. "The daily rise and fall of the VIX1D: Causes and solutions of its overnight bias," Finance Research Letters, Elsevier, vol. 62(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Yunqi & Zhou, Ti, 2023. "Out-of-sample equity premium prediction: The role of option-implied constraints," Journal of Empirical Finance, Elsevier, vol. 70(C), pages 199-226.
    2. Haase, Felix & Neuenkirch, Matthias, 2023. "Predictability of bull and bear markets: A new look at forecasting stock market regimes (and returns) in the US," International Journal of Forecasting, Elsevier, vol. 39(2), pages 587-605.
    3. Díaz, Juan D. & Hansen, Erwin & Cabrera, Gabriel, 2024. "Machine-learning stock market volatility: Predictability, drivers, and economic value," International Review of Financial Analysis, Elsevier, vol. 94(C).
    4. Dbouk, Wassim & Jamali, Ibrahim, 2018. "Predicting daily oil prices: Linear and non-linear models," Research in International Business and Finance, Elsevier, vol. 46(C), pages 149-165.
    5. Liang, Chao & Luo, Qin & Li, Yan & Huynh, Luu Duc Toan, 2023. "Global financial stress index and long-term volatility forecast for international stock markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 88(C).
    6. Zhang, Zhikai & He, Mengxi & Zhang, Yaojie & Wang, Yudong, 2022. "Geopolitical risk trends and crude oil price predictability," Energy, Elsevier, vol. 258(C).
    7. Zhang, Lixia & Luo, Qin & Guo, Xiaozhu & Umar, Muhammad, 2022. "Medium-term and long-term volatility forecasts for EUA futures with country-specific economic policy uncertainty indices," Resources Policy, Elsevier, vol. 77(C).
    8. Ahmed, Shamim & Liu, Xiaoquan & Valente, Giorgio, 2016. "Can currency-based risk factors help forecast exchange rates?," International Journal of Forecasting, Elsevier, vol. 32(1), pages 75-97.
    9. Jiqian Wang & Rangan Gupta & Oğuzhan Çepni & Feng Ma, 2023. "Forecasting international REITs volatility: the role of oil-price uncertainty," The European Journal of Finance, Taylor & Francis Journals, vol. 29(14), pages 1579-1597, September.
    10. Clark, Todd & McCracken, Michael, 2013. "Advances in Forecast Evaluation," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1107-1201, Elsevier.
    11. Matteo Bonato & Oguzhan Cepni & Rangan Gupta & Christian Pierdzioch, 2024. "Business applications and state‐level stock market realized volatility: A forecasting experiment," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(2), pages 456-472, March.
    12. Jayawardena, Nirodha I. & Todorova, Neda & Li, Bin & Su, Jen-Je, 2016. "Forecasting stock volatility using after-hour information: Evidence from the Australian Stock Exchange," Economic Modelling, Elsevier, vol. 52(PB), pages 592-608.
    13. Asgharian, Hossein & Christiansen, Charlotte & Hou, Ai Jun, 2023. "The effect of uncertainty on stock market volatility and correlation," Journal of Banking & Finance, Elsevier, vol. 154(C).
    14. Sousa, Ricardo M. & Vivian, Andrew & Wohar, Mark E., 2016. "Predicting asset returns in the BRICS: The role of macroeconomic and fundamental predictors," International Review of Economics & Finance, Elsevier, vol. 41(C), pages 122-143.
    15. Straetmans, S.T.M. & Candelon, B. & Ahmed, J., 2012. "Predicting and capitalizing on stock market bears in the U.S," Research Memorandum 019, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
    16. Zhang, Yaojie & Lei, Likun & Wei, Yu, 2020. "Forecasting the Chinese stock market volatility with international market volatilities: The role of regime switching," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
    17. Li, Dakai, 2024. "Forecasting stock market realized volatility: The role of investor attention to the price of petroleum products," International Review of Economics & Finance, Elsevier, vol. 90(C), pages 115-122.
    18. Busetti, Fabio & Marcucci, Juri, 2013. "Comparing forecast accuracy: A Monte Carlo investigation," International Journal of Forecasting, Elsevier, vol. 29(1), pages 13-27.
    19. Petar Sabtchevsky & Paul Whelan & Andrea Vedolin & Philippe Mueller, 2017. "Variance Risk Premia on Stocks and Bonds," 2017 Meeting Papers 1161, Society for Economic Dynamics.
    20. Francesco Audrino & Yujia Hu, 2016. "Volatility Forecasting: Downside Risk, Jumps and Leverage Effect," Econometrics, MDPI, vol. 4(1), pages 1-24, February.

    More about this item

    Keywords

    Realized volatility; VIX1D index; Volatility prediction;
    All these keywords.

    JEL classification:

    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation
    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading
    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:finlet:v:58:y:2023:i:pd:s1544612323010012. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/frl .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.