A novel perspective on forecasting non-ferrous metals’ volatility: Integrating deep learning techniques with econometric models
Author
Abstract
Suggested Citation
DOI: 10.1016/j.frl.2023.104482
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Bonato, Matteo & Gkillas, Konstantinos & Gupta, Rangan & Pierdzioch, Christian, 2021.
"A note on investor happiness and the predictability of realized volatility of gold,"
Finance Research Letters, Elsevier, vol. 39(C).
- Matteo Bonato & Konstantinos Gkillas & Rangan Gupta & Christian Pierdzioch, 2020. "A Note on Investor Happiness and the Predictability of Realized Volatility of Gold," Working Papers 202004, University of Pretoria, Department of Economics.
- Bollerslev, Tim, 1986.
"Generalized autoregressive conditional heteroskedasticity,"
Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
- Tim Bollerslev, 1986. "Generalized autoregressive conditional heteroskedasticity," EERI Research Paper Series EERI RP 1986/01, Economics and Econometrics Research Institute (EERI), Brussels.
- Hu, Yan & Ni, Jian & Wen, Liu, 2020. "A hybrid deep learning approach by integrating LSTM-ANN networks with GARCH model for copper price volatility prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 557(C).
- Jarque, Carlos M. & Bera, Anil K., 1980. "Efficient tests for normality, homoscedasticity and serial independence of regression residuals," Economics Letters, Elsevier, vol. 6(3), pages 255-259.
- Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
- Rayadurgam, Vikram Chandramouli & Mangalagiri, Jayasree, 2023. "Does inclusion of GARCH variance in deep learning models improve financial contagion prediction?," Finance Research Letters, Elsevier, vol. 54(C).
- Tseng, Chih-Hsiung & Cheng, Sheng-Tzong & Wang, Yi-Hsien & Peng, Jin-Tang, 2008. "Artificial neural network model of the hybrid EGARCH volatility of the Taiwan stock index option prices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(13), pages 3192-3200.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Dimitrios Kartsonakis Mademlis & Nikolaos Dritsakis, 2021. "Volatility Forecasting using Hybrid GARCH Neural Network Models: The Case of the Italian Stock Market," International Journal of Economics and Financial Issues, Econjournals, vol. 11(1), pages 49-60.
- Alizadeh, Amir H. & Tamvakis, Michael, 2016. "Market conditions, trader types and price–volume relation in energy futures markets," Energy Economics, Elsevier, vol. 56(C), pages 134-149.
- Nikolaos Antonakakis & Ioannis Chatziantoniou & David Gabauer, 2021. "The impact of Euro through time: Exchange rate dynamics under different regimes," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(1), pages 1375-1408, January.
- Christian Bontemps & Nour Meddahi, 2012.
"Testing distributional assumptions: A GMM aproach,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(6), pages 978-1012, September.
- N. Meddahi & C. Bontemps, 2004. "Testing Distributional Assumptions: A GMM Approach," Econometric Society 2004 North American Winter Meetings 487, Econometric Society.
- Christian Bontemps & Nour Meddahi, 2012. "Testing distributional assumptions: A GMM aproach," Post-Print hal-02875123, HAL.
- Bontemps, Christian & Meddahi, Nour, 2007. "Testing Distributional Assumptions: A GMM Approach," IDEI Working Papers 486, Institut d'Économie Industrielle (IDEI), Toulouse.
- Li, Gang & Li, Yong, 2015. "Forecasting copper futures volatility under model uncertainty," Resources Policy, Elsevier, vol. 46(P2), pages 167-176.
- Tim Bollerslev & Robert J. Hodrick, 1992. "Financial Market Efficiency Tests," NBER Working Papers 4108, National Bureau of Economic Research, Inc.
- Islam Azzam & Jasmin Fouad, 2010. "Evaluation Of The Impact Of Day Trading On The Egyptian Stock Market," The International Journal of Business and Finance Research, The Institute for Business and Finance Research, vol. 4(1), pages 1-21.
- Halkos, George & Tzirivis, Apostolos, 2018. "Effective energy commodities’ risk management: Econometric modeling of price volatility," MPRA Paper 90781, University Library of Munich, Germany.
- Jara, Alejandro & Piña, Marco, 2023.
"Exchange rate volatility and the effectiveness of FX interventions: The case of Chile,"
Latin American Journal of Central Banking (previously Monetaria), Elsevier, vol. 4(2).
- Alejandro Jara & Marco Piña, 2022. "Exchange rate volatility and the effectiveness of FX interventions: the case of Chile," Working Papers Central Bank of Chile 962, Central Bank of Chile.
- Bontemps, Christian & Meddahi, Nour, 2005.
"Testing normality: a GMM approach,"
Journal of Econometrics, Elsevier, vol. 124(1), pages 149-186, January.
- BONTEMPS, Christian & MEDDAHI, Nour, 2002. "Testing Normality : A GMM Approach," Cahiers de recherche 2002-14, Universite de Montreal, Departement de sciences economiques.
- Christian Bontemps & Nour Meddahi, 2005. "Testing normality: a GMM approach," Post-Print hal-02875105, HAL.
- Christian BONTEMPS & Nour MEDDAHI, 2002. "Testing Normality : A Gmm Approach," Cahiers de recherche 14-2002, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
- Christian Bontemps & Nour Meddahi, 2002. "Testing Normality: A GMM Approach," CIRANO Working Papers 2002s-63, CIRANO.
- Shiferaw, Y., 2018. "The Bayesian MS-GARCH model and Value-at-Risk in South African agricultural commodity price markets," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 275991, International Association of Agricultural Economists.
- Vanshu Mahajan & Sunil Thakan & Aashish Malik, 2022. "Modeling and Forecasting the Volatility of NIFTY 50 Using GARCH and RNN Models," Economies, MDPI, vol. 10(5), pages 1-20, April.
- Siwen Zhou, 2021. "Exploring the driving forces of the Bitcoin currency exchange rate dynamics: an EGARCH approach," Empirical Economics, Springer, vol. 60(2), pages 557-606, February.
- Nagaraj Naik & Biju R. Mohan, 2021. "Stock Price Volatility Estimation Using Regime Switching Technique-Empirical Study on the Indian Stock Market," Mathematics, MDPI, vol. 9(14), pages 1-18, July.
- Perry Sadorsky & Michael D. McKenzie, 2008. "Power transformation models and volatility forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(7), pages 587-606.
- Alizadeh, Amir H., 2013. "Trading volume and volatility in the shipping forward freight market," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 49(1), pages 250-265.
- Rahman, Md Lutfur & Troster, Victor & Uddin, Gazi Salah & Yahya, Muhammad, 2022. "Systemic risk contribution of banks and non-bank financial institutions across frequencies: The Australian experience," International Review of Financial Analysis, Elsevier, vol. 79(C).
- Bentes, Sónia R., 2022. "On the stylized facts of precious metals’ volatility: A comparative analysis of pre- and during COVID-19 crisis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 600(C).
- Keagile Lesame & Elie Bouri & David Gabauer & Rangan Gupta, 2021. "On the Dynamics of International Real Estate Investment Trust Propagation Mechanisms: Evidence from Time-Varying Return and Volatility Connectedness Measures," Working Papers 202152, University of Pretoria, Department of Economics.
- Wang, Yudong & Wu, Chongfeng, 2012. "Forecasting energy market volatility using GARCH models: Can multivariate models beat univariate models?," Energy Economics, Elsevier, vol. 34(6), pages 2167-2181.
More about this item
Keywords
Volatility; Nonferrous metals; GARCH; Deep learning; Commodity;All these keywords.
JEL classification:
- C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
- C88 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Other Computer Software
- G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation
- G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:finlet:v:58:y:2023:i:pc:s1544612323008541. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/frl .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.