Fund performance evaluation with explainable artificial intelligence
Author
Abstract
Suggested Citation
DOI: 10.1016/j.frl.2023.104419
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Shihao Gu & Bryan Kelly & Dacheng Xiu, 2020. "Empirical Asset Pricing via Machine Learning," Review of Finance, European Finance Association, vol. 33(5), pages 2223-2273.
- Oh, Natalie Y. & Parwada, Jerry T., 2007. "Relations between mutual fund flows and stock market returns in Korea," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 17(2), pages 140-151, April.
- S. P. Kothari & Jerold B. Warner, 2001. "Evaluating Mutual Fund Performance," Journal of Finance, American Finance Association, vol. 56(5), pages 1985-2010, October.
- Javier Gil‐Bazo & Pablo Ruiz‐Verdú, 2009. "The Relation between Price and Performance in the Mutual Fund Industry," Journal of Finance, American Finance Association, vol. 64(5), pages 2153-2183, October.
- Berger, Theo, 2023. "Explainable artificial intelligence and economic panel data: A study on volatility spillover along the supply chains," Finance Research Letters, Elsevier, vol. 54(C).
- Carhart, Mark M, 1997. "On Persistence in Mutual Fund Performance," Journal of Finance, American Finance Association, vol. 52(1), pages 57-82, March.
- Niklas Bussmann & Paolo Giudici & Dimitri Marinelli & Jochen Papenbrock, 2021. "Explainable Machine Learning in Credit Risk Management," Computational Economics, Springer;Society for Computational Economics, vol. 57(1), pages 203-216, January.
- Nelson Camanho & Harald Hau & Hélène Rey, 2022.
"Global Portfolio Rebalancing and Exchange Rates,"
The Review of Financial Studies, Society for Financial Studies, vol. 35(11), pages 5228-5274.
- Nelson Camanho & Harald Hau & Hélène Rey, 2018. "Global Portfolio Rebalancing and Exchange Rates," NBER Working Papers 24320, National Bureau of Economic Research, Inc.
- Nelson Camanho & Harald Hau & Hélène Rey, 2018. "Global Portfolio Rebalancing and Exchange Rates," Swiss Finance Institute Research Paper Series 18-03, Swiss Finance Institute, revised Jun 2018.
- Rey, Hélène & Camanho, Nelson & Hau, Harald, 2020. "Global Portfolio Rebalancing and Exchange Rates," CEPR Discussion Papers 15617, C.E.P.R. Discussion Papers.
- Shihao Gu & Bryan Kelly & Dacheng Xiu, 2020.
"Empirical Asset Pricing via Machine Learning,"
The Review of Financial Studies, Society for Financial Studies, vol. 33(5), pages 2223-2273.
- Shihao Gu & Bryan Kelly & Dacheng Xiu, 2018. "Empirical Asset Pricing via Machine Learning," NBER Working Papers 25398, National Bureau of Economic Research, Inc.
- Shihao Gu & Bryan T. Kelly & Dacheng Xiu, 2018. "Empirical Asset Pricing via Machine Learning," Swiss Finance Institute Research Paper Series 18-71, Swiss Finance Institute.
- Babaei, Golnoosh & Giudici, Paolo & Raffinetti, Emanuela, 2022. "Explainable artificial intelligence for crypto asset allocation," Finance Research Letters, Elsevier, vol. 47(PB).
- Fama, Eugene F. & French, Kenneth R., 1993. "Common risk factors in the returns on stocks and bonds," Journal of Financial Economics, Elsevier, vol. 33(1), pages 3-56, February.
- Li, Ang & Liu, Mark & Sheather, Simon, 2023. "Predicting stock splits using ensemble machine learning and SMOTE oversampling," Pacific-Basin Finance Journal, Elsevier, vol. 78(C).
- Lin, Boqiang & Bai, Rui, 2022. "Machine learning approaches for explaining determinants of the debt financing in heavy-polluting enterprises," Finance Research Letters, Elsevier, vol. 44(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Berger, Theo, 2023. "Explainable artificial intelligence and economic panel data: A study on volatility spillover along the supply chains," Finance Research Letters, Elsevier, vol. 54(C).
- Christian Fieberg & Daniel Metko & Thorsten Poddig & Thomas Loy, 2023. "Machine learning techniques for cross-sectional equity returns’ prediction," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 45(1), pages 289-323, March.
- Obaid, Khaled & Pukthuanthong, Kuntara, 2022. "A picture is worth a thousand words: Measuring investor sentiment by combining machine learning and photos from news," Journal of Financial Economics, Elsevier, vol. 144(1), pages 273-297.
- Paul Handro & Bogdan Dima, 2024. "Analyzing Financial Markets Efficiency: Insights from a Bibliometric and Content Review," Journal of Financial Studies, Institute of Financial Studies, vol. 16(9), pages 119-175, May.
- Jiaju Miao & Pawel Polak, 2023. "Online Ensemble of Models for Optimal Predictive Performance with Applications to Sector Rotation Strategy," Papers 2304.09947, arXiv.org.
- Esfandiar Maasoumi & Jianqiu Wang & Zhuo Wang & Ke Wu, 2024. "Identifying factors via automatic debiased machine learning," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(3), pages 438-461, April.
- Doron Avramov & Si Cheng & Lior Metzker, 2023. "Machine Learning vs. Economic Restrictions: Evidence from Stock Return Predictability," Management Science, INFORMS, vol. 69(5), pages 2587-2619, May.
- Lioui, Abraham & Tarelli, Andrea, 2022. "Chasing the ESG factor," Journal of Banking & Finance, Elsevier, vol. 139(C).
- Alessi, Lucia & Ossola, Elisa & Panzica, Roberto, 2023. "When do investors go green? Evidence from a time-varying asset-pricing model," International Review of Financial Analysis, Elsevier, vol. 90(C).
- Tian Ma & Cunfei Liao & Fuwei Jiang, 2023. "Timing the factor zoo via deep learning: Evidence from China," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 63(1), pages 485-505, March.
- Cakici, Nusret & Zaremba, Adam, 2021. "Liquidity and the cross-section of international stock returns," Journal of Banking & Finance, Elsevier, vol. 127(C).
- Ma, Tian & Leong, Wen Jun & Jiang, Fuwei, 2023. "A latent factor model for the Chinese stock market," International Review of Financial Analysis, Elsevier, vol. 87(C).
- Pagano, Marco & Wagner, Christian & Zechner, Josef, 2023.
"Disaster resilience and asset prices,"
Journal of Financial Economics, Elsevier, vol. 150(2).
- Marco Pagano & Christian Wagner & Josef Zechner, 2020. "Disaster Resilience and Asset Prices," Papers 2005.08929, arXiv.org, revised May 2020.
- Marco Pagano & Christian Wagner & Josef Zechner, 2020. "Disaster Resilience and Asset Prices," CSEF Working Papers 563, Centre for Studies in Economics and Finance (CSEF), University of Naples, Italy.
- Marco Pagano & Christian Wagner & Josef Zechner, 2020. "Disaster Resilience and Asset Prices," EIEF Working Papers Series 2008, Einaudi Institute for Economics and Finance (EIEF), revised Nov 2021.
- Zechner, Josef & Pagano, Marco & Wagner, Christian, 2020. "Disaster Resilience and Asset Prices," CEPR Discussion Papers 14773, C.E.P.R. Discussion Papers.
- Pagano, Marco & Wagner, Christian & Zechner, Josef, 2021. "Disaster resilience and asset prices," CFS Working Paper Series 673, Center for Financial Studies (CFS).
- Yuxin Liu & Jimin Lin & Achintya Gopal, 2024. "NeuralBeta: Estimating Beta Using Deep Learning," Papers 2408.01387, arXiv.org, revised Oct 2024.
- Victor DeMiguel & Javier Gil-Bazo & Francisco J. Nogales & André A. P. Santos, 2021.
"Can Machine Learning Help to Select Portfolios of Mutual Funds?,"
Working Papers
1245, Barcelona School of Economics.
- Victor DeMiguel & Javier Gil-Bazo & Francisco J. Nogales & André A. P. Santos, 2021. "Can machine learning help to select portfolios of mutual funds?," Economics Working Papers 1772, Department of Economics and Business, Universitat Pompeu Fabra.
- Bagnara, Matteo, 2024. "The economic value of cross-predictability: A performance-based measure," SAFE Working Paper Series 424, Leibniz Institute for Financial Research SAFE.
- Vitor Azevedo & Georg Sebastian Kaiser & Sebastian Mueller, 2023. "Stock market anomalies and machine learning across the globe," Journal of Asset Management, Palgrave Macmillan, vol. 24(5), pages 419-441, September.
- Söhnke M. Bartram & Harald Lohre & Peter F. Pope & Ananthalakshmi Ranganathan, 2021. "Navigating the factor zoo around the world: an institutional investor perspective," Journal of Business Economics, Springer, vol. 91(5), pages 655-703, July.
- Beckmeyer, Heiner & Wiedemann, Timo, 2022. "Recovering Missing Firm Characteristics with Attention-Based Machine Learning," VfS Annual Conference 2022 (Basel): Big Data in Economics 264135, Verein für Socialpolitik / German Economic Association.
- Caldeira, João F. & Santos, André A.P. & Torrent, Hudson S., 2023. "Semiparametric portfolios: Improving portfolio performance by exploiting non-linearities in firm characteristics," Economic Modelling, Elsevier, vol. 122(C).
More about this item
Keywords
Global Open-Ended Funds; Country portfolios; Herfindahl–Hirschman Index; SHapley Additive exPlanations; Machine learning; eXtreme Gradient Boosting;All these keywords.
JEL classification:
- C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
- C55 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Large Data Sets: Modeling and Analysis
- G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
- G15 - Financial Economics - - General Financial Markets - - - International Financial Markets
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:finlet:v:58:y:2023:i:pb:s1544612323007912. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/frl .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.