IDEAS home Printed from https://ideas.repec.org/a/eee/finlet/v58y2023ipas1544612323007183.html
   My bibliography  Save this article

Quantifying the international stock market risk spillover: An analysis based on G-expectation upper variances

Author

Listed:
  • Cai, Yi
  • Tang, Zhenpeng
  • Chen, Kaijie
  • Liu, Dinggao

Abstract

This study proposes a combination model to assess upper variance spillover effects in 14 stock markets. By integrating G-normal distribution model and the connectedness approach, we measure spillover effects and compute upper variance. Empirical findings reveal that developed countries (e.g., Britain, France, Germany) contribute more to upper variance risk, while developing countries (e.g., Philippines, Brazil, Indonesia) receive it. During the crisis, the total spillover index increases from 24.81% to 66.01%. French and German stock markets' spillover rises by 144.21% and 44.94% respectively, while China's spillover is relatively smaller. Dynamic upper variance exhibits an upward trend, sensitive to major economic shocks.

Suggested Citation

  • Cai, Yi & Tang, Zhenpeng & Chen, Kaijie & Liu, Dinggao, 2023. "Quantifying the international stock market risk spillover: An analysis based on G-expectation upper variances," Finance Research Letters, Elsevier, vol. 58(PA).
  • Handle: RePEc:eee:finlet:v:58:y:2023:i:pa:s1544612323007183
    DOI: 10.1016/j.frl.2023.104346
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1544612323007183
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.frl.2023.104346?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bedoui, Rihab & Braeik, Sana & Goutte, Stéphane & Guesmi, Khaled, 2018. "On the study of conditional dependence structure between oil, gold and USD exchange rates," International Review of Financial Analysis, Elsevier, vol. 59(C), pages 134-146.
    2. Diebold, Francis X. & Yılmaz, Kamil, 2014. "On the network topology of variance decompositions: Measuring the connectedness of financial firms," Journal of Econometrics, Elsevier, vol. 182(1), pages 119-134.
    3. Juan M. Morelli & Pablo Ottonello & Diego J. Perez, 2022. "Global Banks and Systemic Debt Crises," Econometrica, Econometric Society, vol. 90(2), pages 749-798, March.
    4. Keith Kuester & Stefan Mittnik & Marc S. Paolella, 2006. "Value-at-Risk Prediction: A Comparison of Alternative Strategies," Journal of Financial Econometrics, Oxford University Press, vol. 4(1), pages 53-89.
    5. Mensi, Walid & Hammoudeh, Shawkat & Al-Jarrah, Idries Mohammad Wanas & Sensoy, Ahmet & Kang, Sang Hoon, 2017. "Dynamic risk spillovers between gold, oil prices and conventional, sustainability and Islamic equity aggregates and sectors with portfolio implications," Energy Economics, Elsevier, vol. 67(C), pages 454-475.
    6. Kim, Jong-Min & Kim, Dong H. & Jung, Hojin, 2021. "Estimating yield spreads volatility using GARCH-type models," The North American Journal of Economics and Finance, Elsevier, vol. 57(C).
    7. Mao, Jie & Shen, Guanxiong & Yan, Jingzhou, 2023. "A continuous-time macro-finance model with Knightian uncertainty," Pacific-Basin Finance Journal, Elsevier, vol. 77(C).
    8. Ferrer, Román & Shahzad, Syed Jawad Hussain & López, Raquel & Jareño, Francisco, 2018. "Time and frequency dynamics of connectedness between renewable energy stocks and crude oil prices," Energy Economics, Elsevier, vol. 76(C), pages 1-20.
    9. Vacca, Gianmarco & Zoia, Maria Grazia & Bagnato, Luca, 2022. "Forecasting in GARCH models with polynomially modified innovations," International Journal of Forecasting, Elsevier, vol. 38(1), pages 117-141.
    10. Peng, Shige, 2008. "Multi-dimensional G-Brownian motion and related stochastic calculus under G-expectation," Stochastic Processes and their Applications, Elsevier, vol. 118(12), pages 2223-2253, December.
    11. Jian Liu & Ziting Zhang & Lizhao Yan & Fenghua Wen, 2021. "Forecasting the volatility of EUA futures with economic policy uncertainty using the GARCH-MIDAS model," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-19, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Mei-Jing & Huang, Jian-Bai & Chen, Jin-Yu, 2022. "Time and frequency spillovers between political risk and the stock returns of China's rare earths," Resources Policy, Elsevier, vol. 75(C).
    2. Iqbal, Najaf & Naeem, Muhammad Abubakr & Suleman, Muhammed Tahir, 2022. "Quantifying the asymmetric spillovers in sustainable investments," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 77(C).
    3. Jian, Zhihong & Lu, Haisong & Zhu, Zhican & Xu, Huiling, 2023. "Frequency heterogeneity of tail connectedness: Evidence from global stock markets," Economic Modelling, Elsevier, vol. 125(C).
    4. Gong, Xu & Xu, Jun, 2022. "Geopolitical risk and dynamic connectedness between commodity markets," Energy Economics, Elsevier, vol. 110(C).
    5. Ding, Qian & Huang, Jianbai & Chen, Jinyu, 2021. "Dynamic and frequency-domain risk spillovers among oil, gold, and foreign exchange markets: Evidence from implied volatility," Energy Economics, Elsevier, vol. 102(C).
    6. Cui, Jinxin & Goh, Mark & Li, Binlin & Zou, Huiwen, 2021. "Dynamic dependence and risk connectedness among oil and stock markets: New evidence from time-frequency domain perspectives," Energy, Elsevier, vol. 216(C).
    7. Urom, Christian & Ndubuisi, Gideon, 2023. "Do geopolitical risks and global market factors influence the dynamic dependence among regional sustainable investments and major commodities?," The Quarterly Review of Economics and Finance, Elsevier, vol. 91(C), pages 94-111.
    8. Cui, Jinxin & Goh, Mark & Zou, Huiwen, 2021. "Coherence, extreme risk spillovers, and dynamic linkages between oil and China’s commodity futures markets," Energy, Elsevier, vol. 225(C).
    9. Dingshi Tian & Zongwu Cai & Ying Fang, 2018. "Econometric Modeling of Risk Measures: A Selective Review of the Recent Literature," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 201807, University of Kansas, Department of Economics, revised Oct 2018.
    10. Mirza, Nawazish & Naeem, Muhammad Abubakr & Ha Nguyen, Thi Thu & Arfaoui, Nadia & Oliyide, Johnson A., 2023. "Are sustainable investments interdependent? The international evidence," Economic Modelling, Elsevier, vol. 119(C).
    11. Arfaoui, Nadia & Naeem, Muhammad Abubakr & Boubaker, Sabri & Mirza, Nawazish & Karim, Sitara, 2023. "Interdependence of clean energy and green markets with cryptocurrencies," Energy Economics, Elsevier, vol. 120(C).
    12. Juan Meng & Yonghong Jiang & Haiwen Zhao & Ansheng Tanliang, 2024. "Asymmetric Effects of Renewable Energy Markets on China’s Green Financial Markets: A Perspective of Time and Frequency Dynamic Connectedness," Mathematics, MDPI, vol. 12(13), pages 1-15, June.
    13. Umar, Zaghum & Yousaf, Imran & Gubareva, Mariya & Vo, Xuan Vinh, 2022. "Spillover and risk transmission between the term structure of the US interest rates and Islamic equities," Pacific-Basin Finance Journal, Elsevier, vol. 72(C).
    14. Hanif, Waqas & Arreola Hernandez, Jose & Kang, Sang Hoon & Boako, Gideon & Yoon, Seong-Min, 2024. "Interdependence and spillovers between big oil companies and regional and global energy equity markets," International Review of Economics & Finance, Elsevier, vol. 92(C), pages 451-469.
    15. Wang, Zi-Xin & Liu, Bing-Yue & Fan, Ying, 2023. "Network connectedness between China's crude oil futures and sector stock indices," Energy Economics, Elsevier, vol. 125(C).
    16. Dai, Zhifeng & Tang, Rui & Zhang, Xiaotong, 2023. "A new multilayer network for measuring interconnectedness among the energy firms," Energy Economics, Elsevier, vol. 124(C).
    17. Ha, Le Thanh & Bouteska, Ahmed & Sharif, Taimur & Abedin, Mohammad Zoynul, 2024. "Dynamic interlinkages between carbon risk and volatility of green and renewable energy: A TVP-VAR analysis," Research in International Business and Finance, Elsevier, vol. 69(C).
    18. Caporin, Massimiliano & Naeem, Muhammad Abubakr & Arif, Muhammad & Hasan, Mudassar & Vo, Xuan Vinh & Hussain Shahzad, Syed Jawad, 2021. "Asymmetric and time-frequency spillovers among commodities using high-frequency data," Resources Policy, Elsevier, vol. 70(C).
    19. Abiodun Moses Adetokunbo & Afe Success Mevhare, 2024. "The interconnectivity between green stocks, oil prices, and uncertainty surrounding economic policy: indications from the United States," SN Business & Economics, Springer, vol. 4(2), pages 1-26, February.
    20. Geng, Jiang-Bo & Liu, Changyu & Ji, Qiang & Zhang, Dayong, 2021. "Do oil price changes really matter for clean energy returns?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).

    More about this item

    Keywords

    Upper variance spillover; G-expectation theory; Connectedness approach; Dynamic analysis;
    All these keywords.

    JEL classification:

    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
    • G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)
    • G15 - Financial Economics - - General Financial Markets - - - International Financial Markets

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:finlet:v:58:y:2023:i:pa:s1544612323007183. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/frl .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.