IDEAS home Printed from https://ideas.repec.org/a/eee/finlet/v49y2022ics1544612322003087.html
   My bibliography  Save this article

Attention to Authority: The behavioural finance of Covid-19

Author

Listed:
  • Burke, Matt
  • Fry, John
  • Kemp, Sean
  • Woodhouse, Drew

Abstract

In this paper we investigate the predictability of cryptocurrency returns following increases in Covid-19 cases/deaths. We find that the rate of government intervention moderates the impact that Covid-19 cases/deaths have on cryptocurrency returns. We show that in periods of tightening government intervention, increases in Covid-19 cases positively predict cryptocurrency returns. We argue that this is due to investors imputing their expectations of the pandemic through a ‘combined’ signal.

Suggested Citation

  • Burke, Matt & Fry, John & Kemp, Sean & Woodhouse, Drew, 2022. "Attention to Authority: The behavioural finance of Covid-19," Finance Research Letters, Elsevier, vol. 49(C).
  • Handle: RePEc:eee:finlet:v:49:y:2022:i:c:s1544612322003087
    DOI: 10.1016/j.frl.2022.103081
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1544612322003087
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.frl.2022.103081?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Iqbal, Najaf & Fareed, Zeeshan & Wan, Guangcai & Shahzad, Farrukh, 2021. "Asymmetric nexus between COVID-19 outbreak in the world and cryptocurrency market," International Review of Financial Analysis, Elsevier, vol. 73(C).
    2. Katsiampa, Paraskevi, 2017. "Volatility estimation for Bitcoin: A comparison of GARCH models," Economics Letters, Elsevier, vol. 158(C), pages 3-6.
    3. Kenneth R. Ahern & Denis Sosyura, 2015. "Rumor Has It: Sensationalism in Financial Media," The Review of Financial Studies, Society for Financial Studies, vol. 28(7), pages 2050-2093.
    4. De Bondt, Werner F M & Thaler, Richard, 1985. "Does the Stock Market Overreact?," Journal of Finance, American Finance Association, vol. 40(3), pages 793-805, July.
    5. Zhang, Wei & Li, Yi & Xiong, Xiong & Wang, Pengfei, 2021. "Downside risk and the cross-section of cryptocurrency returns," Journal of Banking & Finance, Elsevier, vol. 133(C).
    6. Mitchell A. Petersen, 2009. "Estimating Standard Errors in Finance Panel Data Sets: Comparing Approaches," The Review of Financial Studies, Society for Financial Studies, vol. 22(1), pages 435-480, January.
    7. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 33(1), pages 125-132.
    8. Choi, Sangyup & Shin, Junhyeok, 2022. "Bitcoin: An inflation hedge but not a safe haven," Finance Research Letters, Elsevier, vol. 46(PB).
    9. Urquhart, Andrew & Zhang, Hanxiong, 2019. "Is Bitcoin a hedge or safe haven for currencies? An intraday analysis," International Review of Financial Analysis, Elsevier, vol. 63(C), pages 49-57.
    10. Fry, John & Cheah, Eng-Tuck, 2016. "Negative bubbles and shocks in cryptocurrency markets," International Review of Financial Analysis, Elsevier, vol. 47(C), pages 343-352.
    11. Conlon, Thomas & McGee, Richard, 2020. "Safe haven or risky hazard? Bitcoin during the Covid-19 bear market," Finance Research Letters, Elsevier, vol. 35(C).
    12. Fry, John, 2018. "Booms, busts and heavy-tails: The story of Bitcoin and cryptocurrency markets?," Economics Letters, Elsevier, vol. 171(C), pages 225-229.
    13. Goodell, John W. & Goutte, Stephane, 2021. "Co-movement of COVID-19 and Bitcoin: Evidence from wavelet coherence analysis," Finance Research Letters, Elsevier, vol. 38(C).
    14. Paul C. Tetlock, 2011. "All the News That's Fit to Reprint: Do Investors React to Stale Information?," The Review of Financial Studies, Society for Financial Studies, vol. 24(5), pages 1481-1512.
    15. Andrew Detzel & Hong Liu & Jack Strauss & Guofu Zhou & Yingzi Zhu, 2021. "Learning and predictability via technical analysis: Evidence from bitcoin and stocks with hard‐to‐value fundamentals," Financial Management, Financial Management Association International, vol. 50(1), pages 107-137, March.
    16. Yukun Liu & Aleh Tsyvinski & Xi Wu, 2022. "Common Risk Factors in Cryptocurrency," Journal of Finance, American Finance Association, vol. 77(2), pages 1133-1177, April.
    17. Bao Doan & Huy Pham & Binh Nguyen Thanh, 2022. "Price discovery in the cryptocurrency market: evidence from institutional activity," Economia e Politica Industriale: Journal of Industrial and Business Economics, Springer;Associazione Amici di Economia e Politica Industriale, vol. 49(1), pages 111-131, March.
    18. Yukun Liu & Aleh Tsyvinski, 2021. "Risks and Returns of Cryptocurrency," The Review of Financial Studies, Society for Financial Studies, vol. 34(6), pages 2689-2727.
    19. Corbet, Shaen & Hou, Yang (Greg) & Hu, Yang & Larkin, Charles & Oxley, Les, 2020. "Any port in a storm: Cryptocurrency safe-havens during the COVID-19 pandemic," Economics Letters, Elsevier, vol. 194(C).
    20. Carmen López-Martín & Sonia Benito Muela & Raquel Arguedas, 2021. "Efficiency in cryptocurrency markets: new evidence," Eurasian Economic Review, Springer;Eurasia Business and Economics Society, vol. 11(3), pages 403-431, September.
    21. Cheah, Eng-Tuck & Fry, John, 2015. "Speculative bubbles in Bitcoin markets? An empirical investigation into the fundamental value of Bitcoin," Economics Letters, Elsevier, vol. 130(C), pages 32-36.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dunbar, Kwamie & Owusu-Amoako, Johnson, 2022. "Hedging the extreme risk of cryptocurrency," The North American Journal of Economics and Finance, Elsevier, vol. 63(C).
    2. Chen, Bin-xia & Sun, Yan-lin, 2024. "Risk characteristics and connectedness in cryptocurrency markets: New evidence from a non-linear framework," The North American Journal of Economics and Finance, Elsevier, vol. 69(PA).
    3. Dobrynskaya, Victoria, 2024. "Is downside risk priced in cryptocurrency market?," International Review of Financial Analysis, Elsevier, vol. 91(C).
    4. Li, Yi & Urquhart, Andrew & Wang, Pengfei & Zhang, Wei, 2021. "MAX momentum in cryptocurrency markets," International Review of Financial Analysis, Elsevier, vol. 77(C).
    5. Shaen Corbet & Les Oxley, 2023. "Investigating the Academic Response to Cryptocurrencies: Insights from Research Diversification as Separated by Journal Ranking," Review of Corporate Finance, now publishers, vol. 3(4), pages 487-528, September.
    6. Parthajit Kayal & Purnima Rohilla, 2021. "Bitcoin in the economics and finance literature: a survey," SN Business & Economics, Springer, vol. 1(7), pages 1-21, July.
    7. Diniz-Maganini, Natalia & Diniz, Eduardo H. & Rasheed, Abdul A., 2021. "Bitcoin’s price efficiency and safe haven properties during the COVID-19 pandemic: A comparison," Research in International Business and Finance, Elsevier, vol. 58(C).
    8. Ahmed, Walid M.A., 2021. "How do Islamic equity markets respond to good and bad volatility of cryptocurrencies? The case of Bitcoin," Pacific-Basin Finance Journal, Elsevier, vol. 70(C).
    9. Abakah, Emmanuel Joel Aikins & Wali Ullah, GM & Adekoya, Oluwasegun B. & Osei Bonsu, Christiana & Abdullah, Mohammad, 2023. "Blockchain market and eco-friendly financial assets: Dynamic price correlation, connectedness and spillovers with portfolio implications," International Review of Economics & Finance, Elsevier, vol. 87(C), pages 218-243.
    10. Yue, Yao & Li, Xuerong & Zhang, Dingxuan & Wang, Shouyang, 2021. "How cryptocurrency affects economy? A network analysis using bibliometric methods," International Review of Financial Analysis, Elsevier, vol. 77(C).
    11. Tan, Xilong & Tao, Yubo, 2023. "Trend-based forecast of cryptocurrency returns," Economic Modelling, Elsevier, vol. 124(C).
    12. Ştefan Cristian Gherghina & Liliana Nicoleta Simionescu, 2023. "Exploring the asymmetric effect of COVID-19 pandemic news on the cryptocurrency market: evidence from nonlinear autoregressive distributed lag approach and frequency domain causality," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-58, December.
    13. Alexander Guzmán & Christian Pinto-Gutiérrez & María-Andrea Trujillo, 2021. "Trading Cryptocurrencies as a Pandemic Pastime: COVID-19 Lockdowns and Bitcoin Volume," Mathematics, MDPI, vol. 9(15), pages 1-15, July.
    14. Sinda Hadhri, 2021. "Fear of the Coronavirus and Cryptocurrencies' returns," Economics Bulletin, AccessEcon, vol. 41(3), pages 2041-2054.
    15. Smales, L.A., 2022. "Investor attention in cryptocurrency markets," International Review of Financial Analysis, Elsevier, vol. 79(C).
    16. Aurelio F. Bariviera & Ignasi Merediz‐Solà, 2021. "Where Do We Stand In Cryptocurrencies Economic Research? A Survey Based On Hybrid Analysis," Journal of Economic Surveys, Wiley Blackwell, vol. 35(2), pages 377-407, April.
    17. Almeida, José & Gonçalves, Tiago Cruz, 2023. "A systematic literature review of investor behavior in the cryptocurrency markets," Journal of Behavioral and Experimental Finance, Elsevier, vol. 37(C).
    18. Iqbal, Najaf & Fareed, Zeeshan & Wan, Guangcai & Shahzad, Farrukh, 2021. "Asymmetric nexus between COVID-19 outbreak in the world and cryptocurrency market," International Review of Financial Analysis, Elsevier, vol. 73(C).
    19. Jaros{l}aw Kwapie'n & Marcin Wk{a}torek & Stanis{l}aw Dro.zd.z, 2021. "Cryptocurrency Market Consolidation in 2020--2021," Papers 2112.06552, arXiv.org.
    20. Ozkan Haykir & Ibrahim Yagli, 2022. "Speculative bubbles and herding in cryptocurrencies," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-33, December.

    More about this item

    Keywords

    Covid-19; Asset pricing; Cryptocurrency;
    All these keywords.

    JEL classification:

    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • G40 - Financial Economics - - Behavioral Finance - - - General
    • E44 - Macroeconomics and Monetary Economics - - Money and Interest Rates - - - Financial Markets and the Macroeconomy

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:finlet:v:49:y:2022:i:c:s1544612322003087. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/frl .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.