IDEAS home Printed from https://ideas.repec.org/a/eee/finlet/v47y2022ipas1544612322002112.html
   My bibliography  Save this article

Dynamic comparison of portfolio risk: Clean vs dirty energy

Author

Listed:
  • Gargallo, Pilar
  • Lample, Luis
  • Miguel, Jesús
  • Salvador, Manuel

Abstract

This paper analyses whether investing in clean energy significantly worsens the risk level of investors. To that aim, we propose a dynamic strategy to carry out a comparative risk analysis of three minimum-variance portfolios: a portfolio made up exclusively of dirty energies, a portfolio made up only of clean energy assets, and a portfolio combined with the two types of energies. To that aim, we use multivariate GARCH models, concretely Asymmetric Dynamic Conditional Correlations models (ADCC-GARCH) to predict the variance and covariance matrices of the daily asset returns and we compare the portfolio volatilities using the methodology proposed by Engle and Colacito (2006). The analysed period was from January 2010 to September 2021, so that the data include half of phase II, full phase III and the onset of phase IV of the EU ETS, as well as the Brexit and COVID-19 outbreaks in the European context. Our results show that, unlike what happened in other economic crises (subprime, Brexit), from the pandemic crisis, the investment in clean energies is preferable to fossil energies, not only in terms of profitability, as other studies have shown, but also in terms of risk. Therefore, investing in clean energy companies, which are aligned with their role towards socially responsible initiatives, is valuable not only for its contribution to a sustainable energy transition to renewable sources but also for the attractiveness from a financial point of view.

Suggested Citation

  • Gargallo, Pilar & Lample, Luis & Miguel, Jesús & Salvador, Manuel, 2022. "Dynamic comparison of portfolio risk: Clean vs dirty energy," Finance Research Letters, Elsevier, vol. 47(PA).
  • Handle: RePEc:eee:finlet:v:47:y:2022:i:pa:s1544612322002112
    DOI: 10.1016/j.frl.2022.102957
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1544612322002112
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.frl.2022.102957?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Komendantova, Nadejda & Schinko, Thomas & Patt, Anthony, 2019. "De-risking policies as a substantial determinant of climate change mitigation costs in developing countries: Case study of the Middle East and North African region," Energy Policy, Elsevier, vol. 127(C), pages 404-411.
    2. Lin, Boqiang & Chen, Yufang, 2019. "Dynamic linkages and spillover effects between CET market, coal market and stock market of new energy companies: A case of Beijing CET market in China," Energy, Elsevier, vol. 172(C), pages 1198-1210.
    3. Dutta, Anupam & Bouri, Elie & Noor, Md Hasib, 2018. "Return and volatility linkages between CO2 emission and clean energy stock prices," Energy, Elsevier, vol. 164(C), pages 803-810.
    4. Polzin, Friedemann & Egli, Florian & Steffen, Bjarne & Schmidt, Tobias S., 2019. "How do policies mobilize private finance for renewable energy?—A systematic review with an investor perspective," Applied Energy, Elsevier, vol. 236(C), pages 1249-1268.
    5. Stefano Ramelli & Alexander F. Wagner & Richard J. Zeckhauser & Alexandre Ziegler, 2018. "Investor Rewards to Climate Responsibility: Evidence from the 2016 Climate Policy Shock," NBER Working Papers 25310, National Bureau of Economic Research, Inc.
    6. LI, Jie & HUANG, Lixin & LI, Ping, 2021. "Are Chinese crude oil futures good hedging tools?," Finance Research Letters, Elsevier, vol. 38(C).
    7. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    8. Zhang, Guofu & Du, Ziping, 2017. "Co-movements among the stock prices of new energy, high-technology and fossil fuel companies in China," Energy, Elsevier, vol. 135(C), pages 249-256.
    9. Engle, Robert F & Sheppard, Kevin K, 2001. "Theoretical and Empirical Properties of Dynamic Conditional Correlation Multivariate GARCH," University of California at San Diego, Economics Working Paper Series qt5s2218dp, Department of Economics, UC San Diego.
    10. Engle, Robert & Colacito, Riccardo, 2006. "Testing and Valuing Dynamic Correlations for Asset Allocation," Journal of Business & Economic Statistics, American Statistical Association, vol. 24, pages 238-253, April.
    11. Engle, Robert, 2002. "Dynamic Conditional Correlation: A Simple Class of Multivariate Generalized Autoregressive Conditional Heteroskedasticity Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 339-350, July.
    12. Tsuji, Chikashi, 2018. "Return transmission and asymmetric volatility spillovers between oil futures and oil equities: New DCC-MEGARCH analyses," Economic Modelling, Elsevier, vol. 74(C), pages 167-185.
    13. Raffaella Giacomini & Barbara Rossi, 2010. "Forecast comparisons in unstable environments," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(4), pages 595-620.
    14. Ping, Li & Ziyi, Zhang & Tianna, Yang & Qingchao, Zeng, 2018. "The relationship among China’s fuel oil spot, futures and stock markets," Finance Research Letters, Elsevier, vol. 24(C), pages 151-162.
    15. Sadorsky, Perry, 2012. "Correlations and volatility spillovers between oil prices and the stock prices of clean energy and technology companies," Energy Economics, Elsevier, vol. 34(1), pages 248-255.
    16. Özgür Arslan-Ayaydin & James Thewissen, 2016. "The financial reward for environmental performance in the energy sector," Energy & Environment, , vol. 27(3-4), pages 389-413, May.
    17. Wang, Yudong & Guo, Zhuangyue, 2018. "The dynamic spillover between carbon and energy markets: New evidence," Energy, Elsevier, vol. 149(C), pages 24-33.
    18. Wan, Daoxia & Xue, Rui & Linnenluecke, Martina & Tian, Jinfang & Shan, Yuli, 2021. "The impact of investor attention during COVID-19 on investment in clean energy versus fossil fuel firms," Finance Research Letters, Elsevier, vol. 43(C).
    19. Schinko, Thomas & Komendantova, Nadejda, 2016. "De-risking investment into concentrated solar power in North Africa: Impacts on the costs of electricity generation," Renewable Energy, Elsevier, vol. 92(C), pages 262-272.
    20. Tse, Y K & Tsui, Albert K C, 2002. "A Multivariate Generalized Autoregressive Conditional Heteroscedasticity Model with Time-Varying Correlations," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 351-362, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Zhuo & Chen, Xiaodan & Zhou, Chunyan & Zhang, Yifeng & Wei, Yu, 2024. "Examining the quantile cross-coherence between fossil energy and clean energy: Is the dependence structure changing with the COVID-19 outbreak?," International Review of Financial Analysis, Elsevier, vol. 94(C).
    2. Gargallo, Pilar & Lample, Luis & Miguel, Jesús A. & Salvador, Manuel, 2024. "Sequential management of energy and low-carbon portfolios," Research in International Business and Finance, Elsevier, vol. 69(C).
    3. Cheikh, Nidhaleddine Ben & Zaied, Younes Ben, 2023. "Investigating the dynamics of crude oil and clean energy markets in times of geopolitical tensions," Energy Economics, Elsevier, vol. 124(C).
    4. Wang, Lu & Guan, Li & Ding, Qian & Zhang, Hongwei, 2023. "Asymmetric impact of COVID-19 news on the connectedness of the green energy, dirty energy, and non-ferrous metal markets," Energy Economics, Elsevier, vol. 126(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gargallo, Pilar & Lample, Luis & Miguel, Jesús A. & Salvador, Manuel, 2024. "Sequential management of energy and low-carbon portfolios," Research in International Business and Finance, Elsevier, vol. 69(C).
    2. Pilar Gargallo & Luis Lample & Jesús A. Miguel & Manuel Salvador, 2021. "Co-Movements between Eu Ets and the Energy Markets: A Var-Dcc-Garch Approach," Mathematics, MDPI, vol. 9(15), pages 1-36, July.
    3. Otranto, Edoardo, 2010. "Identifying financial time series with similar dynamic conditional correlation," Computational Statistics & Data Analysis, Elsevier, vol. 54(1), pages 1-15, January.
    4. Herwartz, Helmut & Golosnoy, Vasyl, 2007. "Semiparametric Approaches to the Prediction of Conditional Correlation Matrices in Finance," Economics Working Papers 2007-23, Christian-Albrechts-University of Kiel, Department of Economics.
    5. Gu, Fu & Wang, Jiqiang & Guo, Jianfeng & Fan, Ying, 2020. "How the supply and demand of steam coal affect the investment in clean energy industry? Evidence from China," Resources Policy, Elsevier, vol. 69(C).
    6. Evrim Mandacı, Pınar & Cagli, Efe Çaglar & Taşkın, Dilvin, 2020. "Dynamic connectedness and portfolio strategies: Energy and metal markets," Resources Policy, Elsevier, vol. 68(C).
    7. Caporin, Massimiliano & McAleer, Michael, 2014. "Robust ranking of multivariate GARCH models by problem dimension," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 172-185.
    8. Massimiliano Caporin & Michael McAleer, 2010. "Ranking Multivariate GARCH Models by Problem Dimension," CARF F-Series CARF-F-219, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    9. Annastiina Silvennoinen & Timo Teräsvirta, 2009. "Modeling Multivariate Autoregressive Conditional Heteroskedasticity with the Double Smooth Transition Conditional Correlation GARCH Model," Journal of Financial Econometrics, Oxford University Press, vol. 7(4), pages 373-411, Fall.
    10. Carlo Drago & Andrea Scozzari, 2023. "A Network-Based Analysis for Evaluating Conditional Covariance Estimates," Mathematics, MDPI, vol. 11(2), pages 1-19, January.
    11. Avdulaj, Krenar & Barunik, Jozef, 2015. "Are benefits from oil–stocks diversification gone? New evidence from a dynamic copula and high frequency data," Energy Economics, Elsevier, vol. 51(C), pages 31-44.
    12. Gian Piero Aielli, 2011. "Dynamic Conditional Correlation: On properties and estimation," "Marco Fanno" Working Papers 0142, Dipartimento di Scienze Economiche "Marco Fanno".
    13. Becker, R. & Clements, A.E. & Doolan, M.B. & Hurn, A.S., 2015. "Selecting volatility forecasting models for portfolio allocation purposes," International Journal of Forecasting, Elsevier, vol. 31(3), pages 849-861.
    14. Carlo Drago & Andrea Scozzari, 2022. "Evaluating conditional covariance estimates via a new targeting approach and a networks-based analysis," Papers 2202.02197, arXiv.org.
    15. Manabu Asai & Chia-Lin Chang & Michael McAleer & Laurent Pauwels, 2021. "Asymptotic and Finite Sample Properties for Multivariate Rotated GARCH Models," Econometrics, MDPI, vol. 9(2), pages 1-21, May.
    16. Bauwens, Luc & Otranto, Edoardo, 2020. "Nonlinearities and regimes in conditional correlations with different dynamics," Journal of Econometrics, Elsevier, vol. 217(2), pages 496-522.
    17. Timmermann, Allan, 2018. "Forecasting Methods in Finance," CEPR Discussion Papers 12692, C.E.P.R. Discussion Papers.
    18. Yudong Wang & Chongfeng Wu & Li Yang, 2015. "Hedging with Futures: Does Anything Beat the Naïve Hedging Strategy?," Management Science, INFORMS, vol. 61(12), pages 2870-2889, December.
    19. Dan Nie & Yanbin Li & Xiyu Li, 2021. "Dynamic Spillovers and Asymmetric Spillover Effect between the Carbon Emission Trading Market, Fossil Energy Market, and New Energy Stock Market in China," Energies, MDPI, vol. 14(19), pages 1-22, October.
    20. Caporin, M. & McAleer, M.J., 2011. "Ranking Multivariate GARCH Models by Problem Dimension: An Empirical Evaluation," Econometric Institute Research Papers EI 2011-18, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.

    More about this item

    Keywords

    Portfolio selection; Risk management; ADCC-GARCH; Clean energies; Fossil fuels; Energy transition;
    All these keywords.

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • Q42 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Alternative Energy Sources
    • Q56 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environment and Development; Environment and Trade; Sustainability; Environmental Accounts and Accounting; Environmental Equity; Population Growth

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:finlet:v:47:y:2022:i:pa:s1544612322002112. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/frl .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.