IDEAS home Printed from https://ideas.repec.org/a/eee/finlet/v41y2021ics1544612320316585.html
   My bibliography  Save this article

A COVID-19 forecasting system using adaptive neuro-fuzzy inference

Author

Listed:
  • Ly, Kim Tien

Abstract

This article proposes an Adaptive Neuro-Fuzzy Inference System (ANFIS) to forecast the number of COVID-19 cases in the United Kingdom. With the combination of artificial neural network and fuzzy logic structure, the model is trained based on collected data. The study examines various factors of ANFIS to come up with an effective time series prediction model. The result indicates that Spain and Italy data can strengthen the predictive power of COVID-19 cases in the UK. It is suggested that the policymakers should adopt Adaptive Neuro-Fuzzy Inference System (ANFIS) to predict contagion effect during the COVID-19 pandemic.

Suggested Citation

  • Ly, Kim Tien, 2021. "A COVID-19 forecasting system using adaptive neuro-fuzzy inference," Finance Research Letters, Elsevier, vol. 41(C).
  • Handle: RePEc:eee:finlet:v:41:y:2021:i:c:s1544612320316585
    DOI: 10.1016/j.frl.2020.101844
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1544612320316585
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.frl.2020.101844?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. P. Leone, Robert, 1987. "Forecasting the effect of an environmental change on market performance: An intervention time-series approach," International Journal of Forecasting, Elsevier, vol. 3(3-4), pages 463-478.
    2. Just, Małgorzata & Echaust, Krzysztof, 2020. "Stock market returns, volatility, correlation and liquidity during the COVID-19 crisis: Evidence from the Markov switching approach," Finance Research Letters, Elsevier, vol. 37(C).
    3. Zhang, Dayong & Hu, Min & Ji, Qiang, 2020. "Financial markets under the global pandemic of COVID-19," Finance Research Letters, Elsevier, vol. 36(C).
    4. Li, Yan & Liang, Chao & Ma, Feng & Wang, Jiqian, 2020. "The role of the IDEMV in predicting European stock market volatility during the COVID-19 pandemic," Finance Research Letters, Elsevier, vol. 36(C).
    5. Choi, Sun-Yong, 2020. "Industry volatility and economic uncertainty due to the COVID-19 pandemic: Evidence from wavelet coherence analysis," Finance Research Letters, Elsevier, vol. 37(C).
    6. Ortmann, Regina & Pelster, Matthias & Wengerek, Sascha Tobias, 2020. "COVID-19 and investor behavior," Finance Research Letters, Elsevier, vol. 37(C).
    7. Chao Chen & Jamie Twycross & Jonathan M Garibaldi, 2017. "A new accuracy measure based on bounded relative error for time series forecasting," PLOS ONE, Public Library of Science, vol. 12(3), pages 1-23, March.
    8. Rizwan, Muhammad Suhail & Ahmad, Ghufran & Ashraf, Dawood, 2020. "Systemic risk: The impact of COVID-19," Finance Research Letters, Elsevier, vol. 36(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Muhammad Zubair Mumtaz, 2021. "Predicting Stock Indices Trends using Neuro-fuzzy Systems in COVID-19," Lahore Journal of Economics, Department of Economics, The Lahore School of Economics, vol. 26(2), pages 1-18, July-Dec.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Iyer, Subramanian Rama & Simkins, Betty J., 2022. "COVID-19 and the Economy: Summary of research and future directions," Finance Research Letters, Elsevier, vol. 47(PB).
    2. Suripto & Supriyanto, 2021. "The Effect of the COVID-19 Pandemic on Stock Prices with the Event Window Approach: A Case Study of State Gas Companies, in the Energy Sector," International Journal of Energy Economics and Policy, Econjournals, vol. 11(3), pages 155-162.
    3. Naidu, Dharmendra & Ranjeeni, Kumari, 2021. "Effect of coronavirus fear on the performance of Australian stock returns: Evidence from an event study," Pacific-Basin Finance Journal, Elsevier, vol. 66(C).
    4. Bakry, Walid & Kavalmthara, Peter John & Saverimuttu, Vivienne & Liu, Yiyang & Cyril, Sajan, 2022. "Response of stock market volatility to COVID-19 announcements and stringency measures: A comparison of developed and emerging markets," Finance Research Letters, Elsevier, vol. 46(PA).
    5. Dharani, Munusamy & Hassan, M. Kabir & Rabbani, Mustafa Raza & Huq, Tahsin, 2022. "Does the Covid-19 pandemic affect faith-based investments? Evidence from global sectoral indices," Research in International Business and Finance, Elsevier, vol. 59(C).
    6. Hu, Shiwei & Zhang, Yuyao, 2021. "COVID-19 pandemic and firm performance: Cross-country evidence," International Review of Economics & Finance, Elsevier, vol. 74(C), pages 365-372.
    7. Chaiyuth Padungsaksawasdi & Sirimon Treepongkaruna, 2023. "Investor Attention and Global Stock Market Volatility: Evidence from COVID-19," Journal of Emerging Market Finance, Institute for Financial Management and Research, vol. 22(1), pages 85-104, March.
    8. Dongyang Zhang & Cao Wang & Yu Dong, 2023. "How Does Firm ESG Performance Impact Financial Constraints? An Experimental Exploration of the COVID-19 Pandemic," The European Journal of Development Research, Palgrave Macmillan;European Association of Development Research and Training Institutes (EADI), vol. 35(1), pages 219-239, February.
    9. Le, Trung Hai & Do, Hung Xuan & Nguyen, Duc Khuong & Sensoy, Ahmet, 2021. "Covid-19 pandemic and tail-dependency networks of financial assets," Finance Research Letters, Elsevier, vol. 38(C).
    10. Brada, Josef C. & Gajewski, Paweł & Kutan, Ali M., 2021. "Economic resiliency and recovery, lessons from the financial crisis for the COVID-19 pandemic: A regional perspective from Central and Eastern Europe," International Review of Financial Analysis, Elsevier, vol. 74(C).
    11. Ștefan Cristian Gherghina & Daniel Ștefan Armeanu & Camelia Cătălina Joldeș, 2020. "Stock Market Reactions to COVID-19 Pandemic Outbreak: Quantitative Evidence from ARDL Bounds Tests and Granger Causality Analysis," IJERPH, MDPI, vol. 17(18), pages 1-35, September.
    12. Peng-Fei Dai & Xiong Xiong & Zhifeng Liu & Toan Luu Duc Huynh & Jianjun Sun, 2021. "Preventing crash in stock market: The role of economic policy uncertainty during COVID-19," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-15, December.
    13. Salisu, Afees A. & Vo, Xuan Vinh & Lucey, Brian, 2021. "Gold and US sectoral stocks during COVID-19 pandemic," Research in International Business and Finance, Elsevier, vol. 57(C).
    14. Padhan, Rakesh & Prabheesh, K.P., 2021. "The economics of COVID-19 pandemic: A survey," Economic Analysis and Policy, Elsevier, vol. 70(C), pages 220-237.
    15. Runumi Das & Arabinda Debnath, 2022. "Analyzing the COVID-19 Pandemic Volatility Spillover Influence on the Collaboration of Foreign and Indian Stock Markets," Revista Finanzas y Politica Economica, Universidad Católica de Colombia, vol. 14(2), pages 411-452, June.
    16. Akhtaruzzaman, Md & Boubaker, Sabri & Umar, Zaghum, 2022. "COVID–19 media coverage and ESG leader indices," Finance Research Letters, Elsevier, vol. 45(C).
    17. Abuzayed, Bana & Bouri, Elie & Al-Fayoumi, Nedal & Jalkh, Naji, 2021. "Systemic risk spillover across global and country stock markets during the COVID-19 pandemic," Economic Analysis and Policy, Elsevier, vol. 71(C), pages 180-197.
    18. Foglia, Matteo & Addi, Abdelhamid & Angelini, Eliana, 2022. "The Eurozone banking sector in the time of COVID-19: Measuring volatility connectedness," Global Finance Journal, Elsevier, vol. 51(C).
    19. Szczygielski, Jan Jakub & Charteris, Ailie & Bwanya, Princess Rutendo & Brzeszczyński, Janusz, 2022. "The impact and role of COVID-19 uncertainty: A global industry analysis," International Review of Financial Analysis, Elsevier, vol. 80(C).
    20. Wan, Xiaoyuan & Zhang, Jiachen, 2024. "Systematic COVID risk, idiosyncratic COVID risk and stock returns," The North American Journal of Economics and Finance, Elsevier, vol. 69(PA).

    More about this item

    Keywords

    ANFIS; Time series; Forecasting system; Coronavirus; Contagion effect;
    All these keywords.

    JEL classification:

    • C67 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Input-Output Models
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • G15 - Financial Economics - - General Financial Markets - - - International Financial Markets

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:finlet:v:41:y:2021:i:c:s1544612320316585. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/frl .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.