IDEAS home Printed from https://ideas.repec.org/a/eee/finlet/v32y2020ics1544612318308067.html
   My bibliography  Save this article

Forecasting VaR using realized EGARCH model with skewness and kurtosis

Author

Listed:
  • Wu, Xinyu
  • Xia, Michelle
  • Zhang, Huanming

Abstract

This paper proposes an extension of the realized EGARCH (RealEGARCH) model, namely the RealEGARCH model with Skewness and Kurtosis (RealEGARCH-SK model) for forecasting VaR. The model is able to account for time-varying non-Gaussianities (time-varying skewness and kurtosis). The empirical analysis using the Chinese stock indices, the Shanghai Stock Exchange Composite (SSEC) and the Shenzhen Stock Exchange Component (SZSEC), demonstrates that the RealEGARCH-SK model produces more accurate extreme VaR forecasts than the standard realized GARCH (RealGARCH) and RealEGARCH models with the normal distribution and the RealEGARCH model with the skewed t-distribution (RealEGARCH-ST model).

Suggested Citation

  • Wu, Xinyu & Xia, Michelle & Zhang, Huanming, 2020. "Forecasting VaR using realized EGARCH model with skewness and kurtosis," Finance Research Letters, Elsevier, vol. 32(C).
  • Handle: RePEc:eee:finlet:v:32:y:2020:i:c:s1544612318308067
    DOI: 10.1016/j.frl.2019.01.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1544612318308067
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.frl.2019.01.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Paul H. Kupiec, 1995. "Techniques for verifying the accuracy of risk measurement models," Finance and Economics Discussion Series 95-24, Board of Governors of the Federal Reserve System (U.S.).
    2. Anders Wilhelmsson, 2009. "Value at Risk with time varying variance, skewness and kurtosis--the NIG-ACD model," Econometrics Journal, Royal Economic Society, vol. 12(1), pages 82-104, March.
    3. Bali, Turan G. & Mo, Hengyong & Tang, Yi, 2008. "The role of autoregressive conditional skewness and kurtosis in the estimation of conditional VaR," Journal of Banking & Finance, Elsevier, vol. 32(2), pages 269-282, February.
    4. Rockinger, Michael & Jondeau, Eric, 2002. "Entropy densities with an application to autoregressive conditional skewness and kurtosis," Journal of Econometrics, Elsevier, vol. 106(1), pages 119-142, January.
    5. Peter Reinhard Hansen & Zhuo Huang, 2016. "Exponential GARCH Modeling With Realized Measures of Volatility," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(2), pages 269-287, April.
    6. Harvey, Campbell R. & Siddique, Akhtar, 1999. "Autoregressive Conditional Skewness," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 34(4), pages 465-487, December.
    7. Christoffersen, Peter F, 1998. "Evaluating Interval Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 841-862, November.
    8. Leon, Angel & Rubio, Gonzalo & Serna, Gregorio, 2005. "Autoregresive conditional volatility, skewness and kurtosis," The Quarterly Review of Economics and Finance, Elsevier, vol. 45(4-5), pages 599-618, September.
    9. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    10. Tian, Shuairu & Hamori, Shigeyuki, 2015. "Modeling interest rate volatility: A Realized GARCH approach," Journal of Banking & Finance, Elsevier, vol. 61(C), pages 158-171.
    11. Andersen, Torben G. & Bollerslev, Tim & Diebold, Francis X. & Ebens, Heiko, 2001. "The distribution of realized stock return volatility," Journal of Financial Economics, Elsevier, vol. 61(1), pages 43-76, July.
    12. Peter Reinhard Hansen & Zhuo Huang & Howard Howan Shek, 2012. "Realized GARCH: a joint model for returns and realized measures of volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(6), pages 877-906, September.
    13. Toshiaki Watanabe, 2012. "Quantile Forecasts Of Financial Returns Using Realized Garch Models," The Japanese Economic Review, Japanese Economic Association, vol. 63(1), pages 68-80, March.
    14. Sharma, Prateek & Vipul,, 2016. "Forecasting stock market volatility using Realized GARCH model: International evidence," The Quarterly Review of Economics and Finance, Elsevier, vol. 59(C), pages 222-230.
    15. Zhuo Huang & Tianyi Wang & Peter Reinhard Hansen, 2017. "Option Pricing with the Realized GARCH Model: An Analytical Approximation Approach," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 37(4), pages 328-358, April.
    16. Bekaert, Geert & Engstrom, Eric & Ermolov, Andrey, 2015. "Bad environments, good environments: A non-Gaussian asymmetric volatility model," Journal of Econometrics, Elsevier, vol. 186(1), pages 258-275.
    17. Arnold Polanski & Evarist Stoja, 2010. "Incorporating higher moments into value-at-risk forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(6), pages 523-535.
    18. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Jiatong & Zhu, You & Wang, Gang-Jin & Xie, Chi & Wang, Qilin, 2024. "Risk contagion of NFT: A time-frequency risk spillover perspective in the Carbon-NFT-Stock system," Finance Research Letters, Elsevier, vol. 59(C).
    2. Sylvia J. Soltyk & Felix Chan, 2023. "Modeling time‐varying higher‐order conditional moments: A survey," Journal of Economic Surveys, Wiley Blackwell, vol. 37(1), pages 33-57, February.
    3. Zhimin Wu & Guanghui Cai, 2024. "Can intraday data improve the joint estimation and prediction of risk measures? Evidence from a variety of realized measures," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(6), pages 1956-1974, September.
    4. Jui‐Cheng Hung & Hung‐Chun Liu & J. Jimmy Yang, 2023. "Does the tail risk index matter in forecasting downside risk?," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 28(3), pages 3451-3466, July.
    5. Zhu, Pengfei & Tang, Yong & Wei, Yu & Dai, Yimin & Lu, Tuantuan, 2021. "Relationships and portfolios between oil and Chinese stock sectors: A study based on wavelet denoising-higher moments perspective," Energy, Elsevier, vol. 217(C).
    6. Marta Małecka & Radosław Pietrzyk, 2024. "A spectral approach to evaluating VaR forecasts: stock market evidence from the subprime mortgage crisis, through COVID-19, to the Russo–Ukrainian war," Quality & Quantity: International Journal of Methodology, Springer, vol. 58(5), pages 4533-4567, October.
    7. León, Ángel & Ñíguez, Trino-Manuel, 2021. "The transformed Gram Charlier distribution: Parametric properties and financial risk applications," Journal of Empirical Finance, Elsevier, vol. 63(C), pages 323-349.
    8. Kerry Liu, 2023. "America's decoupling from China: A perspective from stock markets," Economic Affairs, Wiley Blackwell, vol. 43(1), pages 32-52, February.
    9. Shijia Song & Handong Li, 2023. "A new model for forecasting VaR and ES using intraday returns aggregation," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(5), pages 1039-1054, August.
    10. Seema REHMAN & Saqib SHARIF & Wali ULLAH, 2021. "Higher Realized Moments and Stock Return Predictability," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(1), pages 48-70, December.
    11. Wu, Xinyu & Zhao, An & Liu, Li, 2023. "Forecasting VIX using two-component realized EGARCH model," The North American Journal of Economics and Finance, Elsevier, vol. 67(C).
    12. Zhu, Pengfei & Tang, Yong & Wei, Yu & Lu, Tuantuan, 2021. "Multidimensional risk spillovers among crude oil, the US and Chinese stock markets: Evidence during the COVID-19 epidemic," Energy, Elsevier, vol. 231(C).
    13. Luo, Changqing & Qu, Yi & Su, Yaya & Dong, Liang, 2024. "Risk spillover from international crude oil markets to China’s financial markets: Evidence from extreme events and U.S. monetary policy," The North American Journal of Economics and Finance, Elsevier, vol. 70(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Tianyi & Liang, Fang & Huang, Zhuo & Yan, Hong, 2022. "Do realized higher moments have information content? - VaR forecasting based on the realized GARCH-RSRK model," Economic Modelling, Elsevier, vol. 109(C).
    2. Sylvia J. Soltyk & Felix Chan, 2023. "Modeling time‐varying higher‐order conditional moments: A survey," Journal of Economic Surveys, Wiley Blackwell, vol. 37(1), pages 33-57, February.
    3. Wei Kuang, 2021. "Dynamic VaR forecasts using conditional Pearson type IV distribution," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(3), pages 500-511, April.
    4. Huang, Zhuo & Liang, Fang & Wang, Tianyi & Li, Chao, 2021. "Modeling dynamic higher moments of crude oil futures," Finance Research Letters, Elsevier, vol. 39(C).
    5. Takahashi, Makoto & Watanabe, Toshiaki & Omori, Yasuhiro, 2016. "Volatility and quantile forecasts by realized stochastic volatility models with generalized hyperbolic distribution," International Journal of Forecasting, Elsevier, vol. 32(2), pages 437-457.
    6. Wu, Qi & Yan, Xing, 2019. "Capturing deep tail risk via sequential learning of quantile dynamics," Journal of Economic Dynamics and Control, Elsevier, vol. 109(C).
    7. Richard Gerlach & Chao Wang, 2016. "Bayesian Semi-parametric Realized-CARE Models for Tail Risk Forecasting Incorporating Realized Measures," Papers 1612.08488, arXiv.org.
    8. Vica Tendenan & Richard Gerlach & Chao Wang, 2020. "Tail risk forecasting using Bayesian realized EGARCH models," Papers 2008.05147, arXiv.org, revised Aug 2020.
    9. Xing Yan & Weizhong Zhang & Lin Ma & Wei Liu & Qi Wu, 2020. "Parsimonious Quantile Regression of Financial Asset Tail Dynamics via Sequential Learning," Papers 2010.08263, arXiv.org.
    10. Papantonis, Ioannis & Rompolis, Leonidas & Tzavalis, Elias, 2023. "Improving variance forecasts: The role of Realized Variance features," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1221-1237.
    11. Chao Wang & Richard Gerlach, 2019. "Semi-parametric Realized Nonlinear Conditional Autoregressive Expectile and Expected Shortfall," Papers 1906.09961, arXiv.org.
    12. Lang, Korbinian & Auer, Benjamin R., 2020. "The economic and financial properties of crude oil: A review," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
    13. Wilson Calmon & Eduardo Ferioli & Davi Lettieri & Johann Soares & Adrian Pizzinga, 2021. "An Extensive Comparison of Some Well‐Established Value at Risk Methods," International Statistical Review, International Statistical Institute, vol. 89(1), pages 148-166, April.
    14. Song, Shijia & Li, Handong, 2022. "Predicting VaR for China's stock market: A score-driven model based on normal inverse Gaussian distribution," International Review of Financial Analysis, Elsevier, vol. 82(C).
    15. Donggyu Kim & Minseog Oh & Yazhen Wang, 2022. "Conditional quantile analysis for realized GARCH models," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(4), pages 640-665, July.
    16. Chao Wang & Richard Gerlach & Qian Chen, 2018. "A Semi-parametric Realized Joint Value-at-Risk and Expected Shortfall Regression Framework," Papers 1807.02422, arXiv.org, revised Jan 2021.
    17. Song, Shijia & Tian, Fei & Li, Handong, 2021. "An intraday-return-based Value-at-Risk model driven by dynamic conditional score with censored generalized Pareto distribution," Journal of Asian Economics, Elsevier, vol. 74(C).
    18. Ergün, A. Tolga & Jun, Jongbyung, 2010. "Time-varying higher-order conditional moments and forecasting intraday VaR and Expected Shortfall," The Quarterly Review of Economics and Finance, Elsevier, vol. 50(3), pages 264-272, August.
    19. Cathy W. S. Chen & Edward M. H. Lin & Tara F. J. Huang, 2022. "Bayesian quantile forecasting via the realized hysteretic GARCH model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(7), pages 1317-1337, November.
    20. Chao Wang & Qian Chen & Richard Gerlach, 2017. "Bayesian Realized-GARCH Models for Financial Tail Risk Forecasting Incorporating Two-sided Weibull Distribution," Papers 1707.03715, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:finlet:v:32:y:2020:i:c:s1544612318308067. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/frl .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.