IDEAS home Printed from https://ideas.repec.org/a/eee/finlet/v27y2018icp105-112.html
   My bibliography  Save this article

Network topology and systemic risk: Evidence from the Euro Stoxx market

Author

Listed:
  • Li, Wenwei
  • Hommel, Ulrich
  • Paterlini, Sandra

Abstract

This study investigates the network topology of equity volatilities. We propose a novel approach to model the interdependencies of the Euro Stoxx companies by constructing the minimum spanning tree with the upper tail dependence coefficient of the equity volatility. The empirical results demonstrate the usefulness of the network topology for the detection of systemic risk in high-volatility environments. More specifically, during crisis periods, the topology of the minimum spanning tree becomes more star-like and compact, accompanied by stronger rich-club effects. Such a network configuration is known to be less resilient to shock and more prone to systemic risk.

Suggested Citation

  • Li, Wenwei & Hommel, Ulrich & Paterlini, Sandra, 2018. "Network topology and systemic risk: Evidence from the Euro Stoxx market," Finance Research Letters, Elsevier, vol. 27(C), pages 105-112.
  • Handle: RePEc:eee:finlet:v:27:y:2018:i:c:p:105-112
    DOI: 10.1016/j.frl.2018.02.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1544612317305470
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.frl.2018.02.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Betz, Frank & Hautsch, Nikolaus & Peltonen, Tuomas A. & Schienle, Melanie, 2016. "Systemic risk spillovers in the European banking and sovereign network," Journal of Financial Stability, Elsevier, vol. 25(C), pages 206-224.
    2. repec:dau:papers:123456789/10757 is not listed on IDEAS
    3. Souza, Sergio Rubens Stancato de & Silva, Thiago Christiano & Tabak, Benjamin Miranda & Guerra, Solange Maria, 2016. "Evaluating systemic risk using bank default probabilities in financial networks," Journal of Economic Dynamics and Control, Elsevier, vol. 66(C), pages 54-75.
    4. R. Mantegna, 1999. "Hierarchical structure in financial markets," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 11(1), pages 193-197, September.
    5. McNeil, Alexander J. & Frey, Rudiger, 2000. "Estimation of tail-related risk measures for heteroscedastic financial time series: an extreme value approach," Journal of Empirical Finance, Elsevier, vol. 7(3-4), pages 271-300, November.
    6. Allen, Franklin & Hryckiewicz, Aneta & Kowalewski, Oskar & Tümer-Alkan, Günseli, 2014. "Transmission of financial shocks in loan and deposit markets: Role of interbank borrowing and market monitoring," Journal of Financial Stability, Elsevier, vol. 15(C), pages 112-126.
    7. Patton, Andrew J., 2012. "A review of copula models for economic time series," Journal of Multivariate Analysis, Elsevier, vol. 110(C), pages 4-18.
    8. Evis Këllezi & Manfred Gilli, 2000. "Extreme Value Theory for Tail-Related Risk Measures," FAME Research Paper Series rp18, International Center for Financial Asset Management and Engineering.
    9. Miccichè, Salvatore & Bonanno, Giovanni & Lillo, Fabrizio & Mantegna, Rosario N, 2002. "Volatility in financial markets: stochastic models and empirical results," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 314(1), pages 756-761.
    10. Eboli, Mario, 2013. "A flow network analysis of direct balance-sheet contagion in financial networks," Kiel Working Papers 1862, Kiel Institute for the World Economy (IfW Kiel).
    11. Brechmann, Eike & Czado, Claudia & Paterlini, Sandra, 2014. "Flexible dependence modeling of operational risk losses and its impact on total capital requirements," Journal of Banking & Finance, Elsevier, vol. 40(C), pages 271-285.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Shaowen & Caporin, Massimiliano & Paterlini, Sandra, 2021. "Dynamic network analysis of North American financial institutions," Finance Research Letters, Elsevier, vol. 42(C).
    2. Baumöhl, Eduard & Shahzad, Syed Jawad Hussain, 2019. "Quantile coherency networks of international stock markets," Finance Research Letters, Elsevier, vol. 31(C), pages 119-129.
    3. Ahmad, Wasim & Tiwari, Shiv Ratan & Wadhwani, Akshay & Khan, Mohammad Azeem & Bekiros, Stelios, 2023. "Financial networks and systemic risk vulnerabilities: A tale of Indian banks," Research in International Business and Finance, Elsevier, vol. 65(C).
    4. Chuangxia Huang & Xian Zhao & Renli Su & Xiaoguang Yang & Xin Yang, 2022. "Dynamic network topology and market performance: A case of the Chinese stock market," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(2), pages 1962-1978, April.
    5. Yang, Xin & Wen, Shigang & Zhao, Xian & Huang, Chuangxia, 2020. "Systemic importance of financial institutions: A complex network perspective," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    6. Νikolaos A. Kyriazis, 2021. "Investigating the nexus between European major and sectoral stock indices, gold and oil during the COVID-19 pandemic," SN Business & Economics, Springer, vol. 1(4), pages 1-12, April.
    7. Huang, Wei-Qiang & Wang, Dan, 2020. "Financial network linkages to predict economic output," Finance Research Letters, Elsevier, vol. 33(C).
    8. Wang, Dan & Huang, Wei-Qiang, 2021. "Centrality-based measures of financial institutions’ systemic importance: A tail dependence network view," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 562(C).
    9. Fang, Ming & Taylor, Stephen & Uddin, Ajim, 2022. "The network structure of overnight index swap rates," Finance Research Letters, Elsevier, vol. 46(PB).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xisong Jin, 2018. "How much does book value data tell us about systemic risk and its interactions with the macroeconomy? A Luxembourg empirical evaluation," BCL working papers 118, Central Bank of Luxembourg.
    2. Tomohiro Ando & Matthew Greenwood-Nimmo & Yongcheol Shin, 2022. "Quantile Connectedness: Modeling Tail Behavior in the Topology of Financial Networks," Management Science, INFORMS, vol. 68(4), pages 2401-2431, April.
    3. Jose Arreola Hernandez & Sang Hoon Kang & Ron P. McIver & Seong-Min Yoon, 2021. "Network Interdependence and Optimization of Bank Portfolios from Developed and Emerging Asia Pacific Countries," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 28(4), pages 613-647, December.
    4. Erick Treviño Aguilar, 2020. "The interdependency structure in the Mexican stock exchange: A network approach," PLOS ONE, Public Library of Science, vol. 15(10), pages 1-31, October.
    5. Nandita Bhattacharjee & Ambika Prasad Pati, 2023. "Exploring Systemic Risk Measurement Issues in Shadow Banks: A Case of an Emerging Economy," South Asian Journal of Macroeconomics and Public Finance, , vol. 12(2), pages 186-217, December.
    6. Alexander J. McNeil, 2020. "Modelling volatile time series with v-transforms and copulas," Papers 2002.10135, arXiv.org, revised Jan 2021.
    7. Bouri, Elie & Saeed, Tareq & Vo, Xuan Vinh & Roubaud, David, 2021. "Quantile connectedness in the cryptocurrency market," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 71(C).
    8. Silva, Walmir & Kimura, Herbert & Sobreiro, Vinicius Amorim, 2017. "An analysis of the literature on systemic financial risk: A survey," Journal of Financial Stability, Elsevier, vol. 28(C), pages 91-114.
    9. Cao, Guangxi & Zhang, Qi & Li, Qingchen, 2017. "Causal relationship between the global foreign exchange market based on complex networks and entropy theory," Chaos, Solitons & Fractals, Elsevier, vol. 99(C), pages 36-44.
    10. Sudarshan Kumar & Tiziana Di Matteo & Anindya S. Chakrabarti, 2020. "Disentangling shock diffusion on complex networks: Identification through graph planarity," Papers 2001.01518, arXiv.org.
    11. Bastidon, Cécile & Jawadi, Fredj, 2024. "Trade fragmentation and volatility-of-volatility networks," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 91(C).
    12. Zhimei Lei & Kuo-Jui Wu & Li Cui & Ming K Lim, 2018. "A Hybrid Approach to Explore the Risk Dependency Structure among Agribusiness Firms," Sustainability, MDPI, vol. 10(2), pages 1-17, February.
    13. Bystrom, Hans N. E., 2004. "Managing extreme risks in tranquil and volatile markets using conditional extreme value theory," International Review of Financial Analysis, Elsevier, vol. 13(2), pages 133-152.
    14. Kim, Kyungwon & Jung, Sean S., 2014. "Empirical analysis of structural change in Credit Default Swap volatility," Chaos, Solitons & Fractals, Elsevier, vol. 60(C), pages 56-67.
    15. Liu, Bing-Yue & Fan, Ying & Ji, Qiang & Hussain, Nazim, 2022. "High-dimensional CoVaR network connectedness for measuring conditional financial contagion and risk spillovers from oil markets to the G20 stock system," Energy Economics, Elsevier, vol. 105(C).
    16. Adão, Luiz F.S. & Silveira, Douglas & Ely, Regis A. & Cajueiro, Daniel O., 2022. "The impacts of interest rates on banks’ loan portfolio risk-taking," Journal of Economic Dynamics and Control, Elsevier, vol. 144(C).
    17. Fabrizio Durante & Roberta Pappadà & Nicola Torelli, 2014. "Clustering of financial time series in risky scenarios," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 8(4), pages 359-376, December.
    18. Bystrom, Hans N. E., 2005. "Extreme value theory and extremely large electricity price changes," International Review of Economics & Finance, Elsevier, vol. 14(1), pages 41-55.
    19. Louis Chakkalakal & Ulrich Hommel & Wenwei Li, 2018. "Transport infrastructure equities in mixed-asset portfolios: estimating risk with a Garch-Copula CVaR model," Journal of Property Research, Taylor & Francis Journals, vol. 35(2), pages 117-138, April.
    20. Stanislav S Borysov & Alexander V Balatsky, 2014. "Cross-Correlation Asymmetries and Causal Relationships between Stock and Market Risk," PLOS ONE, Public Library of Science, vol. 9(8), pages 1-11, August.

    More about this item

    Keywords

    Systemic risk; Copula; Tail dependence; Minimum spanning tree;
    All these keywords.

    JEL classification:

    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General
    • G1 - Financial Economics - - General Financial Markets
    • G2 - Financial Economics - - Financial Institutions and Services
    • G3 - Financial Economics - - Corporate Finance and Governance

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:finlet:v:27:y:2018:i:c:p:105-112. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/frl .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.