IDEAS home Printed from https://ideas.repec.org/a/eee/finana/v93y2024ics1057521924000814.html
   My bibliography  Save this article

Human-AI collaboration to mitigate decision noise in financial underwriting: A study on FinTech innovation in a lending firm

Author

Listed:
  • Sachan, Swati
  • Almaghrabi, Fatima
  • Yang, Jian-Bo
  • Xu, Dong-Ling

Abstract

Financial institutions have recognized the value of collaborating human expertise and AI to create high-performance augmented decision-support systems. Stakeholders at lending firms have increasingly acknowledged that plugging data into AI algorithms and eliminating the role of human underwriters by automation, with the expectation of immediate returns on investment from business process automation, is a flawed strategy. This research emphasizes the necessity of auditing the consistency of decisions (or professional judgment) made by human underwriters and monitoring the ability of data to capture the lending policies of a firm to lay a strong foundation for a legitimate system before investing millions in AI projects. The judgments made by experts in the past re-emerge in the future as outcomes or labels in the data used to train and evaluate algorithms. This paper presents Evidential Reasoning-eXplainer, a methodology to estimate probability mass as an extent of support for a given decision on a loan application by jointly assessing multiple independent and conflicting pieces of evidence. It quantifies variability in past decisions by comparing the subjective judgments of underwriters during manual financial underwriting with outcomes estimated from data. The consistency analysis improves decision quality by bridging the gap between past inconsistent decisions and desired ultimate-true decisions. A case study on a specialist lending firm demonstrates the strategic work plan adapted to configure underwriters and developers to capture the correct data and audit the quality of decisions.

Suggested Citation

  • Sachan, Swati & Almaghrabi, Fatima & Yang, Jian-Bo & Xu, Dong-Ling, 2024. "Human-AI collaboration to mitigate decision noise in financial underwriting: A study on FinTech innovation in a lending firm," International Review of Financial Analysis, Elsevier, vol. 93(C).
  • Handle: RePEc:eee:finana:v:93:y:2024:i:c:s1057521924000814
    DOI: 10.1016/j.irfa.2024.103149
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1057521924000814
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.irfa.2024.103149?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Andreas Fuster & Matthew Plosser & Philipp Schnabl & James Vickery, 2019. "The Role of Technology in Mortgage Lending," The Review of Financial Studies, Society for Financial Studies, vol. 32(5), pages 1854-1899.
    2. Wu, Chunchi & Wang, Xu-Ming, 2000. "A Neural Network Approach for Analyzing Small Business Lending Decisions," Review of Quantitative Finance and Accounting, Springer, vol. 15(3), pages 259-276, November.
    3. Lei Chen & Ling Diao & Jun Sang, 2018. "Weighted Evidence Combination Rule Based on Evidence Distance and Uncertainty Measure: An Application in Fault Diagnosis," Mathematical Problems in Engineering, Hindawi, vol. 2018, pages 1-10, January.
    4. Dominik Dellermann & Philipp Ebel & Matthias Söllner & Jan Marco Leimeister, 2019. "Hybrid Intelligence," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 61(5), pages 637-643, October.
    5. Zoe M. Boundy-Singer & Corey M. Ziemba & Robbe L. T. Goris, 2023. "Confidence reflects a noisy decision reliability estimate," Nature Human Behaviour, Nature, vol. 7(1), pages 142-154, January.
    6. Kowalewski, Oskar & Pisany, Paweł, 2022. "Banks' consumer lending reaction to fintech and bigtech credit emergence in the context of soft versus hard credit information processing," International Review of Financial Analysis, Elsevier, vol. 81(C).
    7. Akter, Shahriar & Hossain, Md Afnan & Sajib, Shahriar & Sultana, Saida & Rahman, Mahfuzur & Vrontis, Demetris & McCarthy, Grace, 2023. "A framework for AI-powered service innovation capability: Review and agenda for future research," Technovation, Elsevier, vol. 125(C).
    8. Almansour, Mohammed, 2023. "Artificial intelligence and resource optimization: A study of Fintech start-ups," Resources Policy, Elsevier, vol. 80(C).
    9. Chee Kian Leong, 2016. "Credit Risk Scoring with Bayesian Network Models," Computational Economics, Springer;Society for Computational Economics, vol. 47(3), pages 423-446, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cuadros-Solas, Pedro J. & Cubillas, Elena & Salvador, Carlos, 2023. "Does alternative digital lending affect bank performance? Cross-country and bank-level evidence," International Review of Financial Analysis, Elsevier, vol. 90(C).
    2. Krzysztof Waliszewski & Ewa Cichowicz & £ukasz Gêbski & Filip Kliber & Jakub Kubiczek & Pawe³ Niedzió³ka & Ma³gorzata Solarz & Anna Warchlewska, 2023. "The role of the Lendtech sector in the consumer credit market in the context of household financial exclusion," Oeconomia Copernicana, Institute of Economic Research, vol. 14(2), pages 609-643, June.
    3. Cuadros-Solas, Pedro J. & Cubillas, Elena & Salvador, Carlos & Suárez, Nuria, 2024. "Digital disruptors at the gate. Does FinTech lending affect bank market power and stability?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 92(C).
    4. Guo, Junyan & Fang, Hanqing & Liu, Xuexin & Wang, Cizhi & Wang, Yuan, 2023. "FinTech and financing constraints of enterprises: Evidence from China," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 82(C).
    5. Choudhary, Priya & Thenmozhi, M., 2024. "Fintech and financial sector: ADO analysis and future research agenda," International Review of Financial Analysis, Elsevier, vol. 93(C).
    6. Mikel Bedayo & Gabriel Jiménez & José-Luis Peydró & Raquel Vegas, 2020. "Screening and Loan Origination Time: Lending Standards, Loan Defaults and Bank Failures," Working Papers 1215, Barcelona School of Economics.
    7. Tironi, Martín & Rivera Lisboa, Diego Ignacio, 2023. "Artificial intelligence in the new forms of environmental governance in the Chilean State: Towards an eco-algorithmic governance," Technology in Society, Elsevier, vol. 74(C).
    8. Iñaki Aldasoro & Sebastian Doerr & Haonan Zhou, 2023. "Non-bank lending during crises," BIS Working Papers 1074, Bank for International Settlements.
    9. Francesco Ciampi & Alessandro Giannozzi & Giacomo Marzi & Edward I. Altman, 2021. "Rethinking SME default prediction: a systematic literature review and future perspectives," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(3), pages 2141-2188, March.
    10. Liu, Jiangtao & Zhang, Yi & Kuang, Jia, 2023. "Fintech development and green innovation: Evidence from China," Energy Policy, Elsevier, vol. 183(C).
    11. Fan, Chenguang & Bae, Seongho & Liu, Yu, 2024. "Can FinTech transform corporate liquidity? Evidence from China," Innovation and Green Development, Elsevier, vol. 3(2).
    12. Li, Yibei & Wang, Ximei & Djehiche, Boualem & Hu, Xiaoming, 2020. "Credit scoring by incorporating dynamic networked information," European Journal of Operational Research, Elsevier, vol. 286(3), pages 1103-1112.
    13. Le, Hong Hanh & Viviani, Jean-Laurent, 2018. "Predicting bank failure: An improvement by implementing a machine-learning approach to classical financial ratios," Research in International Business and Finance, Elsevier, vol. 44(C), pages 16-25.
    14. Hasan, Iftekhar & Li, Xiang & Takalo, Tuomas, 2023. "Technological innovation and the bank lending channel of monetary policy transmission," IWH Discussion Papers 14/2021, Halle Institute for Economic Research (IWH), revised 2023.
    15. Doerr, Sebastian & Frost, Jon & Gambacorta, Leonardo & Shreeti, Vatsala, 2023. "Big techs in finance," CEPR Discussion Papers 18665, C.E.P.R. Discussion Papers.
    16. Greg Buchak & Gregor Matvos & Tomasz Piskorski & Amit Seru, 2024. "Beyond the Balance Sheet Model of Banking: Implications for Bank Regulation and Monetary Policy," Journal of Political Economy, University of Chicago Press, vol. 132(2), pages 616-693.
    17. Michail Tsagris, 2021. "A New Scalable Bayesian Network Learning Algorithm with Applications to Economics," Computational Economics, Springer;Society for Computational Economics, vol. 57(1), pages 341-367, January.
    18. Junlong Peng & Jing Zhou & Fanyi Meng & Yan Yu, 2021. "Analysis on the hidden cost of prefabricated buildings based on FISM-BN," PLOS ONE, Public Library of Science, vol. 16(6), pages 1-20, June.
    19. Kowalewski, Oskar & Pisany, Paweł, 2022. "Banks' consumer lending reaction to fintech and bigtech credit emergence in the context of soft versus hard credit information processing," International Review of Financial Analysis, Elsevier, vol. 81(C).
    20. Biancini, Sara & Verdier, Marianne, 2023. "Bank-platform competition in the credit market," International Journal of Industrial Organization, Elsevier, vol. 91(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:finana:v:93:y:2024:i:c:s1057521924000814. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/620166 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.