IDEAS home Printed from https://ideas.repec.org/a/eee/finana/v83y2022ics1057521922002071.html
   My bibliography  Save this article

A study of cross-industry return predictability in the Chinese stock market

Author

Listed:
  • Ellington, Michael
  • Stamatogiannis, Michalis P.
  • Zheng, Yawen

Abstract

We investigate cross-industry return predictability for the Shanghai and Shenzhen stock exchanges, by constructing 6- and 26- industry portfolios. The dominance of retail investors in these markets, in conjunction with the gradual diffusion of information hypothesis provide the theoretical background that allows us to employ machine learning methods to test for cross-industry predictability. We find that Oil, Telecommunications and Finance industry portfolio returns are significant predictors of other industries. Our out-of-sample forecasting exercise shows that the OLS post-LASSO estimation outperforms a variety of benchmarks and a long–short trading strategy generates an average annual excess return of 13%.

Suggested Citation

  • Ellington, Michael & Stamatogiannis, Michalis P. & Zheng, Yawen, 2022. "A study of cross-industry return predictability in the Chinese stock market," International Review of Financial Analysis, Elsevier, vol. 83(C).
  • Handle: RePEc:eee:finana:v:83:y:2022:i:c:s1057521922002071
    DOI: 10.1016/j.irfa.2022.102249
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1057521922002071
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.irfa.2022.102249?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ivo Welch & Amit Goyal, 2008. "A Comprehensive Look at The Empirical Performance of Equity Premium Prediction," The Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1455-1508, July.
    2. Hong, Harrison & Torous, Walter & Valkanov, Rossen, 2007. "Do industries lead stock markets?," Journal of Financial Economics, Elsevier, vol. 83(2), pages 367-396, February.
    3. Lior Menzly & Oguzhan Ozbas, 2010. "Market Segmentation and Cross‐predictability of Returns," Journal of Finance, American Finance Association, vol. 65(4), pages 1555-1580, August.
    4. Tobias J. Moskowitz & Mark Grinblatt, 1999. "Do Industries Explain Momentum?," Journal of Finance, American Finance Association, vol. 54(4), pages 1249-1290, August.
    5. Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
    6. Thierry Foucault & David Sraer & David J. Thesmar, 2011. "Individual Investors and Volatility," Journal of Finance, American Finance Association, vol. 66(4), pages 1369-1406, August.
    7. Francis X. Diebold & Kamil Yilmaz, 2009. "Measuring Financial Asset Return and Volatility Spillovers, with Application to Global Equity Markets," Economic Journal, Royal Economic Society, vol. 119(534), pages 158-171, January.
    8. Lutz Kilian & Cheolbeom Park, 2009. "The Impact Of Oil Price Shocks On The U.S. Stock Market," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 50(4), pages 1267-1287, November.
    9. Fama, Eugene F. & French, Kenneth R., 2015. "A five-factor asset pricing model," Journal of Financial Economics, Elsevier, vol. 116(1), pages 1-22.
    10. Norton, Seth W, 1992. "Transaction Costs, Telecommunications, and the Microeconomics of Macroeconomic Growth," Economic Development and Cultural Change, University of Chicago Press, vol. 41(1), pages 175-196, October.
    11. Lauren Cohen & Andrea Frazzini, 2008. "Economic Links and Predictable Returns," Journal of Finance, American Finance Association, vol. 63(4), pages 1977-2011, August.
    12. Azi Ben-Rephael & Zhi Da & Ryan D. Israelsen, 2017. "It Depends on Where You Search: Institutional Investor Attention and Underreaction to News," The Review of Financial Studies, Society for Financial Studies, vol. 30(9), pages 3009-3047.
    13. Liu, Jianan & Stambaugh, Robert F. & Yuan, Yu, 2019. "Size and value in China," Journal of Financial Economics, Elsevier, vol. 134(1), pages 48-69.
    14. A. Belloni & V. Chernozhukov & I. Fernández‐Val & C. Hansen, 2017. "Program Evaluation and Causal Inference With High‐Dimensional Data," Econometrica, Econometric Society, vol. 85, pages 233-298, January.
    15. David E. Rapach & Jack K. Strauss & Guofu Zhou, 2013. "International Stock Return Predictability: What Is the Role of the United States?," Journal of Finance, American Finance Association, vol. 68(4), pages 1633-1662, August.
    16. Nicolas Huck, 2019. "Large data sets and machine learning: Applications to statistical arbitrage," Post-Print hal-02143971, HAL.
    17. John Y. Campbell & Samuel B. Thompson, 2008. "Predicting Excess Stock Returns Out of Sample: Can Anything Beat the Historical Average?," The Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1509-1531, July.
    18. David E. Rapach & Jack K. Strauss & Guofu Zhou, 2010. "Out-of-Sample Equity Premium Prediction: Combination Forecasts and Links to the Real Economy," The Review of Financial Studies, Society for Financial Studies, vol. 23(2), pages 821-862, February.
    19. Wang, Yudong & Pan, Zhiyuan & Liu, Li & Wu, Chongfeng, 2019. "Oil price increases and the predictability of equity premium," Journal of Banking & Finance, Elsevier, vol. 102(C), pages 43-58.
    20. Chen, Jian & Jiang, Fuwei & Liu, Yangshu & Tu, Jun, 2017. "International volatility risk and Chinese stock return predictability," Journal of International Money and Finance, Elsevier, vol. 70(C), pages 183-203.
    21. Lars-Hendrik Roller & Leonard Waverman, 2001. "Telecommunications Infrastructure and Economic Development: A Simultaneous Approach," American Economic Review, American Economic Association, vol. 91(4), pages 909-923, September.
    22. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    23. Kewei Hou, 2007. "Industry Information Diffusion and the Lead-lag Effect in Stock Returns," The Review of Financial Studies, Society for Financial Studies, vol. 20(4), pages 1113-1138.
    24. Raffaella Giacomini & Halbert White, 2006. "Tests of Conditional Predictive Ability," Econometrica, Econometric Society, vol. 74(6), pages 1545-1578, November.
    25. Jordan, Steven J. & Vivian, Andrew & Wohar, Mark E., 2014. "Sticky prices or economically-linked economies: The case of forecasting the Chinese stock market," Journal of International Money and Finance, Elsevier, vol. 41(C), pages 95-109.
    26. Hongwei Zhang & Qiang He & Ben Jacobsen & Fuwei Jiang, 2020. "Forecasting stock returns with model uncertainty and parameter instability," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(5), pages 629-644, August.
    27. Fama, Eugene F. & French, Kenneth R., 1997. "Industry costs of equity," Journal of Financial Economics, Elsevier, vol. 43(2), pages 153-193, February.
    28. Godfrey, Leslie G, 1978. "Testing for Higher Order Serial Correlation in Regression Equations When the Regressors Include Lagged Dependent Variables," Econometrica, Econometric Society, vol. 46(6), pages 1303-1310, November.
    29. Huang, Wanling & Mollick, Andre Varella, 2020. "Tight oil, real WTI prices and U.S. stock returns," Energy Economics, Elsevier, vol. 85(C).
    30. Harrison Hong & Jeremy C. Stein, 1999. "A Unified Theory of Underreaction, Momentum Trading, and Overreaction in Asset Markets," Journal of Finance, American Finance Association, vol. 54(6), pages 2143-2184, December.
    31. Ross Levine, 2003. "More on finance and growth: more finance, more growth?," Review, Federal Reserve Bank of St. Louis, vol. 85(Jul), pages 31-46.
    32. Huck, Nicolas, 2019. "Large data sets and machine learning: Applications to statistical arbitrage," European Journal of Operational Research, Elsevier, vol. 278(1), pages 330-342.
    33. Hui Zou & Trevor Hastie, 2005. "Addendum: Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(5), pages 768-768, November.
    34. Huang, Wei & Lai, Pei-Chun & Bessler, David A., 2018. "On the changing structure among Chinese equity markets: Hong Kong, Shanghai, and Shenzhen," European Journal of Operational Research, Elsevier, vol. 264(3), pages 1020-1032.
    35. Nandha, Mohan & Faff, Robert, 2008. "Does oil move equity prices? A global view," Energy Economics, Elsevier, vol. 30(3), pages 986-997, May.
    36. Chen, Zhuo & Lu, Andrea, 2017. "Slow diffusion of information and price momentum in stocks: Evidence from options markets," Journal of Banking & Finance, Elsevier, vol. 75(C), pages 98-108.
    37. Hui Zou & Trevor Hastie, 2005. "Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(2), pages 301-320, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yaojie Zhang & Yudong Wang & Feng Ma, 2021. "Forecasting US stock market volatility: How to use international volatility information," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(5), pages 733-768, August.
    2. Yanying Zhang & Yiuman Tse & Gaiyan Zhang, 2022. "Return predictability between industries and the stock market in China," Pacific Economic Review, Wiley Blackwell, vol. 27(2), pages 194-220, May.
    3. Lee, Charles M.C. & Sun, Stephen Teng & Wang, Rongfei & Zhang, Ran, 2019. "Technological links and predictable returns," Journal of Financial Economics, Elsevier, vol. 132(3), pages 76-96.
    4. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    5. Díaz, Juan D. & Hansen, Erwin & Cabrera, Gabriel, 2023. "Gold risk premium estimation with machine learning methods," Journal of Commodity Markets, Elsevier, vol. 31(C).
    6. Wang, Yudong & Pan, Zhiyuan & Wu, Chongfeng & Wu, Wenfeng, 2020. "Industry equi-correlation: A powerful predictor of stock returns," Journal of Empirical Finance, Elsevier, vol. 59(C), pages 1-24.
    7. Zareei, Abalfazl, 2019. "Network origins of portfolio risk," Journal of Banking & Finance, Elsevier, vol. 109(C).
    8. Xi Dong & Yan Li & David E. Rapach & Guofu Zhou, 2022. "Anomalies and the Expected Market Return," Journal of Finance, American Finance Association, vol. 77(1), pages 639-681, February.
    9. Dichtl, Hubert & Drobetz, Wolfgang & Neuhierl, Andreas & Wendt, Viktoria-Sophie, 2021. "Data snooping in equity premium prediction," International Journal of Forecasting, Elsevier, vol. 37(1), pages 72-94.
    10. Wen, Danyan & He, Mengxi & Wang, Yudong & Zhang, Yaojie, 2024. "Forecasting crude oil market volatility: A comprehensive look at uncertainty variables," International Journal of Forecasting, Elsevier, vol. 40(3), pages 1022-1041.
    11. Chao Liang & Yu Wei & Likun Lei & Feng Ma, 2022. "Global equity market volatility forecasting: New evidence," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(1), pages 594-609, January.
    12. Nusret Cakici & Christian Fieberg & Daniel Metko & Adam Zaremba, 2024. "Do Anomalies Really Predict Market Returns? New Data and New Evidence," Review of Finance, European Finance Association, vol. 28(1), pages 1-44.
    13. Nuno Silva, 2015. "Industry based equity premium forecasts," GEMF Working Papers 2015-19, GEMF, Faculty of Economics, University of Coimbra.
    14. Zhang, Yaojie & Wahab, M.I.M. & Wang, Yudong, 2023. "Forecasting crude oil market volatility using variable selection and common factor," International Journal of Forecasting, Elsevier, vol. 39(1), pages 486-502.
    15. Niu, Zibo & Demirer, Riza & Suleman, Muhammad Tahir & Zhang, Hongwei & Zhu, Xuehong, 2024. "Do industries predict stock market volatility? Evidence from machine learning models," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 90(C).
    16. Bannigidadmath, Deepa & Narayan, Paresh Kumar, 2016. "Stock return predictability and determinants of predictability and profits," Emerging Markets Review, Elsevier, vol. 26(C), pages 153-173.
    17. Alexandridis, Antonios K. & Apergis, Iraklis & Panopoulou, Ekaterini & Voukelatos, Nikolaos, 2023. "Equity premium prediction: The role of information from the options market," Journal of Financial Markets, Elsevier, vol. 64(C).
    18. Nyberg, Henri & Pönkä, Harri, 2016. "International sign predictability of stock returns: The role of the United States," Economic Modelling, Elsevier, vol. 58(C), pages 323-338.
    19. Alexander M. Chinco & Adam D. Clark-Joseph & Mao Ye, 2017. "Sparse Signals in the Cross-Section of Returns," NBER Working Papers 23933, National Bureau of Economic Research, Inc.
    20. Rapach, David E. & Ringgenberg, Matthew C. & Zhou, Guofu, 2016. "Short interest and aggregate stock returns," Journal of Financial Economics, Elsevier, vol. 121(1), pages 46-65.

    More about this item

    Keywords

    Return predictability; Shrinkage; LASSO; Model selection; Industry portfolio;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C55 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Large Data Sets: Modeling and Analysis
    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:finana:v:83:y:2022:i:c:s1057521922002071. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/620166 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.