IDEAS home Printed from https://ideas.repec.org/a/eee/epplan/v46y2014icp80-86.html
   My bibliography  Save this article

Understanding the economic impacts of disruptions in water service

Author

Listed:
  • Heflin, Colleen
  • Jensen, Jennifer
  • Miller, Kathleen

Abstract

Over the past decade, there has been much attention focused on community readiness for catastrophic emergency events, such as major natural disasters or terrorist attacks. However, though the economic costs associated with experiencing such an event are high, the probability of such events occurring is quite low. At the same time, less catastrophic events that temporarily disrupt essential services to local areas, such as water and electricity, are quite common. However, there is little research that documents residents’ actual economic costs when their water service is disrupted. In this paper, we contribute to the growing literature assigning economic value to residential water service by documenting the economic costs residents report from routine, small-scale water disruptions through focus groups and in-person interviews. We find that residential impacts ranged from over $1400 in savings (from working more hours than usual and eating out less than usual) to a cost of over $1000, with an overall average of $93.96. These costs, particularly when multiplied over a substantial population, become quite significant and demonstrate the importance of studying the economic costs of such events.

Suggested Citation

  • Heflin, Colleen & Jensen, Jennifer & Miller, Kathleen, 2014. "Understanding the economic impacts of disruptions in water service," Evaluation and Program Planning, Elsevier, vol. 46(C), pages 80-86.
  • Handle: RePEc:eee:epplan:v:46:y:2014:i:c:p:80-86
    DOI: 10.1016/j.evalprogplan.2014.05.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0149718914000500
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.evalprogplan.2014.05.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Elizabeth Ailes & Philip Budge & Manjunath Shankar & Sarah Collier & William Brinton & Alicia Cronquist & Melissa Chen & Andrew Thornton & Michael J Beach & Joan M Brunkard, 2013. "Economic and Health Impacts Associated with a Salmonella Typhimurium Drinking Water Outbreak−Alamosa, CO, 2008," PLOS ONE, Public Library of Science, vol. 8(3), pages 1-10, March.
    2. Harrington, Winston & Krupnick, Alan J. & Spofford, Walter Jr., 1989. "The economic losses of a waterborne disease outbreak," Journal of Urban Economics, Elsevier, vol. 25(1), pages 116-137, January.
    3. Adam Rose, 2004. "Economic Principles, Issues, and Research Priorities in Hazard Loss Estimation," Advances in Spatial Science, in: Yasuhide Okuyama & Stephanie E. Chang (ed.), Modeling Spatial and Economic Impacts of Disasters, chapter 2, pages 13-36, Springer.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paul Raschky, 2007. "Estimating the effects of risk transfer mechanisms against floods in Europe and U.S.A.: A dynamic panel approach," Working Papers 2007-05, Faculty of Economics and Statistics, Universität Innsbruck.
    2. Masato Yamazaki & Atsushi Koike & Yoshinori Sone, 2018. "A Heuristic Approach to the Estimation of Key Parameters for a Monthly, Recursive, Dynamic CGE Model," Economics of Disasters and Climate Change, Springer, vol. 2(3), pages 283-301, October.
    3. Aaron B. Gertz & James B. Davies & Samantha L. Black, 2019. "A CGE Framework for Modeling the Economics of Flooding and Recovery in a Major Urban Area," Risk Analysis, John Wiley & Sons, vol. 39(6), pages 1314-1341, June.
    4. Stéphane Hallegatte, 2014. "Modeling the Role of Inventories and Heterogeneity in the Assessment of the Economic Costs of Natural Disasters," Risk Analysis, John Wiley & Sons, vol. 34(1), pages 152-167, January.
    5. Jahn, Malte, 2013. "Economics of extreme weather events in cities: Terminology and regional impact models," HWWI Research Papers 143, Hamburg Institute of International Economics (HWWI).
    6. Leslie Richardson & John B. Loomis & Patricia A. Champ, 2013. "Valuing Morbidity from Wildfire Smoke Exposure: A Comparison of Revealed and Stated Preference Techniques," Land Economics, University of Wisconsin Press, vol. 89(1), pages 76-100.
    7. Weijiang Li & Jiahong Wen & Bo Xu & Xiande Li & Shiqiang Du, 2018. "Integrated Assessment of Economic Losses in Manufacturing Industry in Shanghai Metropolitan Area Under an Extreme Storm Flood Scenario," Sustainability, MDPI, vol. 11(1), pages 1-19, December.
    8. John C. Whitehead & Thomas J. Hoban & George Van Houtven, 1999. "Averting Behavior and Drinking Water Quality," Working Papers 9905, East Carolina University, Department of Economics.
    9. Iman Rahimi Aloughareh & Mohsen Ghafory Ashtiany & Kiarash Nasserasadi, 2016. "An Integrated Methodology For Regional Macroeconomic Loss Estimation Of Earthquake: A Case Study Of Tehran," The Singapore Economic Review (SER), World Scientific Publishing Co. Pte. Ltd., vol. 61(04), pages 1-24, September.
    10. Irfan Ahmed & Claudio Socci & Rosita Pretaroli & Francesca Severini & Stefano Deriu, 2022. "Socioeconomic spillovers of the 2016–2017 Italian earthquakes: a bi-regional inoperability model," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(1), pages 426-453, January.
    11. Michael A. Hamilton & Tao Hong & Elizabeth Casman & Patrick L. Gurian, 2015. "Risk‐Based Decision Making for Reoccupation of Contaminated Areas Following a Wide‐Area Anthrax Release," Risk Analysis, John Wiley & Sons, vol. 35(7), pages 1348-1363, July.
    12. Otto, Christian & Willner, Sven Norman & Wenz, Leonie & Frieler, Katja & Levermann, Anders, 2017. "Modeling loss-propagation in the global supply network: The dynamic agent-based model acclimate," OSF Preprints 7yyhd, Center for Open Science.
    13. Baghersad, Milad & Zobel, Christopher W., 2015. "Economic impact of production bottlenecks caused by disasters impacting interdependent industry sectors," International Journal of Production Economics, Elsevier, vol. 168(C), pages 71-80.
    14. Jonkman, S.N. & Bockarjova, M. & Kok, M. & Bernardini, P., 2008. "Integrated hydrodynamic and economic modelling of flood damage in the Netherlands," Ecological Economics, Elsevier, vol. 66(1), pages 77-90, May.
    15. Olivier Beaumais & Anne Briand & Katrin Millock & Céline Nauges, 2010. "What are Households Willing to Pay for Better Tap Water Quality? A Cross-Country Valuation Study," Documents de travail du Centre d'Economie de la Sorbonne 10051, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    16. Kilgarriff, Paul & McDermott, T.K.J. & Vega, Amaya & Morrissey , Karyn & O’Donoghue, Cathal, 2018. "Flooding disruption and the impact on the spatial distribution of commuter’s income," Working Papers 309608, National University of Ireland, Galway, Socio-Economic Marine Research Unit.
    17. Elena Ianchovichina & Maros Ivanic, 2016. "Economic Effects of the Syrian War and the Spread of the Islamic State on the Levant," The World Economy, Wiley Blackwell, vol. 39(10), pages 1584-1627, October.
    18. Inoue, Hiroyasu & Todo, Yasuyuki, 2017. "Firm-level simulation of supply chain disruption triggered by actual and predicted earthquakes," MPRA Paper 82920, University Library of Munich, Germany, revised 22 Feb 2017.
    19. Jun Li & Douglas Crawford‐Brown & Mark Syddall & Dabo Guan, 2013. "Modeling Imbalanced Economic Recovery Following a Natural Disaster Using Input‐Output Analysis," Risk Analysis, John Wiley & Sons, vol. 33(10), pages 1908-1923, October.
    20. Cropper, Maureen L & Oates, Wallace E, 1992. "Environmental Economics: A Survey," Journal of Economic Literature, American Economic Association, vol. 30(2), pages 675-740, June.

    More about this item

    Keywords

    Resilience; Utility;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:epplan:v:46:y:2014:i:c:p:80-86. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/evalprogplan .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.